Different optical techniques are widely used for the characterization of red blood cells (RBC) aggregation. Advantages of these techniques are in their relative simplicity and possibility to analyze a large number or single cells simultaneously without mechanical contact with investigated red blood cells. RBC aggregability refers to the cells' ability to form multicellular aggregates in the presence of different plasma proteins or macromolecules. Opposing forces determine the extent of aggregation by: the repulsive force between the negatively charged cells, the cell-cell adhesion induced by the macromolecules, and the disaggregating flow-induced shear stress. Kinetic and dynamic features of the cells interaction can characterize the RBC aggregation process. In our previous publication, we used de Gennes’ approach that describes macromolecules behavior in the space between two solid surfaces for analysis of the kinetics of rouleaux formation. The present study was undertaken to examine the RBC aggregation in dextran 150 kDa solution, in the light of de Gennes’ model, in a concentrated RBC suspension using the diffuse light scattering technique as well on the single cell level in a highly diluted suspension with pairs of the cells using the optical tweezers. We demonstrated that the kinetics (timing process) and the mechanical features (forces balance characterization) of dextran 150-induced RBC aggregation are not identical according to their contribution to the aggregation process. Optical methods provided handy tools to study the kinetic and dynamic peculiarities of RBCs aggregation and disaggregation, which can be extremely useful for controlling the blood microcirculation especially in cases of hemorheological disorders.
Microrheological parameters of red blood cells (RBCs) and blood viscosity were studied by different optical and rheometric techniques. Measurements were performed under in vitro condition both on the EDTA-stabilized whole blood samples at various temperatures and on the RBCs in autologous serum without platelets at different concentrations of proaggregant macromolecules (Dextran 150, Dextran 500 and albumin). The nonlinear dependences of the aggregation parameters on the concentration of the proaggregant macromolecules in autologous serum were observed. Rheometry of human whole blood samples demonstrates a power law dependence of the suspension viscosity on temperature at such shear rates that allow the RBC aggregation. We assume that there may be an unaccounted temperature dependent synergetic effect of plasma proteins/macromolecules on RBC aggregation and interaction and, consequently, on the blood viscosity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.