This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The architecture of MSE is an assembly of subsystems designed to meet the science requirements and describes what MSE will look like. In this paper we focus on the operations concept of MSE, which describes how to operate a fiber fed, highly multiplexed, dedicated observatory given its architecture and the science requirements.
The operations concept details the phases of operations, from selecting proposals within the science community to distributing back millions of spectra to this community. For each phase, the operations concept describes the tools required to support the science community in their analyses and the operations staff in their work. It also highlights the specific needs related to the complexity of MSE with millions of targets to observe, thousands of fibers to position, and different spectral resolution to use. Finally, the operations concept shows how the science requirements on calibration and observing efficiency can be met.
We describe the process of mapping top-level requirements on MSE to technical specifications for subsystems located at the MSE prime focus. This includes the overall top-level requirements based on knowledge of similar systems at other telescopes and how those requirements were converted into specifications so that the subsystems could begin working on their Conceptual Design Phases. We then discuss the verification of the engineering specifications and the compiling of lower-level requirements and specifications into higher level performance budgets (e.g. Image Quality). We also briefly discuss the interface specifications, their effect on the performance of the system and the plan to manage them going forward. We also discuss the opto-mechanical design of the telescope top end assembly and refer readers to more details for instrumentation located at the top end.
MSE will reuse the same building and telescope pier as CFHT. However, it will be necessary to upgrade the support pier to accommodate a bigger telescope and replace the current dome since a wider slit opening of 12.5 meters in diameter is needed. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. MSE will build upon CFHT’s pioneering work in remote operations, with no staff at the observatory during the night, and use modern technologies to reduce daytime maintenance work.
This paper describes the design approach for redeveloping the CFHT facility for MSE including the infrastructure and equipment considerations required to support and facilitate nighttime observations. The building will be designed so existing equipment and infrastructure can be reused wherever possible while meeting new requirement demands. Past experience and lessons learned will be used to create a modern, optimized, and logical layout of the facility. The purpose of this paper is to provide information to readers involved in the MSE project or organizations involved with the redevelopment of an existing observatory facility for a new mission.
We present an overview of the requirements flow-down for MSE, from Science Requirements Document to Observatory Requirements Document. We have developed the system performance budgets, along with updating the budget architecture of our evolving project. We have also identified the links between subsystems and system budgets (and subsequently science requirements) and included system budget that are unique to MSE as a fiber-fed facility.
All of this has led to a set of Observatory Requirements that is fully consistent with the Science Requirements.
One key metric of the success of MSE will be its survey speed, i.e. how many spectra of good signal-to-noise ratio will MSE be able to obtain every night and every year. The survey speed is directly linked to the allocation efficiency - how many fibers in the focal surface can be allocated to targets - and to the injection efficiency what fraction of light from a target can enter the fiber at the focal surface.
In this paper we focus on the injection efficiency and how to optimize it to increase the signal-to-noise ratio of targets observed in sky dominated conditions. The injection efficiency depends on the size of the fiber and requires highly precise, repeatable and stable positioning of the fiber in the focal surface. We present the allocation budget used for Conceptual Design Review and the modeling that allows to estimate the injection efficiency, which is just one part necessary to meet the science requirements on sensitivities.
One key metric of the success of MSE will be its survey speed, i.e. how many spectra of good signal-to-noise ratio will MSE be able to obtain every night and every year. This is defined at the higher level by the observing efficiency of the observatory and should be at least 80%, as indicated in the Science Requirements.
In this paper we present the observing efficiency budget developed for MSE based on historical data at the Canada-France-Hawaii Telescope and other Maunakea Observatories. We describe the typical sequence of events at night to help us compute the observing efficiency and how we envision to optimize it to meet the science requirements
View contact details
No SPIE Account? Create one