Modern scientific complementary metal-oxide semiconductor (sCMOS) detectors provide a highly competitive alternative to charge-coupled devices (CCDs), the latter of which have historically been dominant in optical imaging. sCMOS boast comparable performances to CCDs with faster frame rates, lower read noise, and a higher dynamic range. Furthermore, their lower production costs are shifting the industry to abandon CCD support and production in favour of CMOS, making their characterization urgent. In this work, we characterized a variety of high-end commercially available sCMOS detectors to gauge the state of this technology in the context of applications in optical astronomy. We evaluated a range of sCMOS detectors, including larger pixel models such as the Teledyne Prime 95B and the Andor Sona-11, which are similar to CCDs in pixel size and suitable for wide-field astronomy. Additionally, we assessed smaller pixel detectors like the Ximea xiJ and Andor Sona-6, which are better suited for deep-sky imaging. Furthermore, high-sensitivity quantitative sCMOS detectors such as the Hamamatsu Orca-Quest C15550-20UP, capable of resolving individual photoelectrons, were also tested. In-lab testing showed low levels of dark current, read noise, faulty pixels, and fixed pattern noise, as well as linearity levels above 98% across all detectors. The Orca-Quest had particularly low noise levels with a dark current of 0.0067 ± 0.0003 e−/s (at −20◦C with air cooling) and a read noise of 0.37 ± 0.09 e− using its standard readout mode. Our tests revealed that the latest generation of sCMOS detectors excels in optical imaging performance, offering a more accessible alternative to CCDs for future optical astronomy instruments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.