Medical imaging technology has always provided radiologists with the opportunity to view and keep records of anatomy of the patient. With the development of machine learning and intelligent computing, these images can be used to create Computer-Aided Diagnosis (CAD) systems, which can assist radiologists in analyzing image data in various ways to provide better health care to patients. This paper looks at increasing accuracy and reducing cost in creating CAD systems, specifically in predicting the malignancy of lung nodules in the Lung Image Database Consortium (LIDC). Much of the cost in creating an accurate CAD system stems from the need for multiple radiologist diagnoses or annotations of each image, since there is rarely a ground truth diagnosis and even different radiologists' diagnoses of the same nodule often disagree. To resolve this issue, this paper outlines an method of selective iterative classification that predicts lung nodule malignancy by using multiple radiologist diagnoses only for cases that can benefit from them. Our method achieved 81% accuracy while costing only 46% of the method that indiscriminately used all annotations, which achieved a lower accuracy of 70%, while costing more.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.