The OSIRIS-REx Visible and InfraRed Spectrometer (OVIRS) operates over the ∼0.4- to 4.3-μm wavelength range. Radiometric calibration over this broad range requires the use of multiple calibration sources. Initial OVIRS in-flight calibration coefficients were previously computed using ground calibration from visible integrating sphere and IR blackbody sources, cross-calibrated with Earth-observing satellites for visible wavelengths, and adjusted using the spectrum of the OSIRIS-REx mission’s target body, asteroid (101955) Bennu. As part of the final in-flight calibration, we determined that the best calibration method removes out-of-band IR signal leakage prior to radiometric calibration and updated the calibration coefficients accordingly. These final calibration coefficients work well for data where the field of view is filled, and we document the possible artifacts in underfilled spots.
The Thermal Infrared Sensor-2 (TIRS-2) aboard Landsat 9 will continue Landsat’s four decade-long legacy of providing moderate resolution thermal imagery from low earth orbit (at 705 km) for environmental applications. Like the Thermal Infrared Sensor aboard Landsat 8, it is a pushbroom sensor with a cross-track field of view of 15° and provides two spectral channels at 10.8 and 12 μm. To ensure radiometric, spatial, and spectral performance, a comprehensive pre-launch testing program is being conducted at NASA Goddard Space Flight Center at the component, subsystem, and instrument level. This paper will focus on the results from the subsystem level testing where the instrument is almost completely assembled. This phase of testing is specifically designed to assess imaging performance including focus and stray light rejection, but is also used to provide a preliminary assessments of spatial and spectral performance. The calibration ground support equipment provides a flexible blackbody illumination source and optics to conduct these tests. The spectral response test setup has its own illumination source outside the chamber that propagates through the calibration ground support equipment in an optical configuration designed for this purpose. This test configuration with the calibration ground support equipment and TIRS-2 subsystem in the thermal vacuum chamber enables a large range of illumination angles for stray light measurements. The results show that TIRS-2 performance is expected to meet all of its performance requirements with few waivers and deviations.
Bryan J. Holler, Stefanie N. Milam, James M. Bauer, Charles Alcock, Michele T. Bannister, Gordon L. Bjoraker, Dennis Bodewits, Amanda S. Bosh, Marc W. Buie, Tony L. Farnham, Nader Haghighipour, Paul S. Hardersen, Alan W. Harris, Christopher M. Hirata, Henry H. Hsieh, Michael Kelley, Matthew M. Knight, Emily A. Kramer, Andrea Longobardo, Conor A. Nixon, Ernesto Palomba, Silvia Protopapa, Lynnae C. Quick, Darin Ragozzine, Vishnu Reddy, Jason D. Rhodes, Andy S. Rivkin, Gal Sarid, Amanda A. Sickafoose, Amy A. Simon, Cristina A. Thomas, David E. Trilling, Robert A. West
We present a community-led assessment of the solar system investigations achievable with NASA’s next-generation space telescope, the Wide Field Infrared Survey Telescope (WFIRST). WFIRST will provide imaging, spectroscopic, and coronagraphic capabilities from 0.43 to 2.0 μm and will be a potential contemporary and eventual successor to the James Webb Space Telescope (JWST). Surveys of irregular satellites and minor bodies are where WFIRST will excel with its 0.28 deg2 field-of-view Wide Field Instrument. Potential ground-breaking discoveries from WFIRST could include detection of the first minor bodies orbiting in the inner Oort Cloud, identification of additional Earth Trojan asteroids, and the discovery and characterization of asteroid binary systems similar to Ida/Dactyl. Additional investigations into asteroids, giant planet satellites, Trojan asteroids, Centaurs, Kuiper belt objects, and comets are presented. Previous use of astrophysics assets for solar system science and synergies between WFIRST, Large Synoptic Survey Telescope, JWST, and the proposed Near-Earth Object Camera mission is discussed. We also present the case for implementation of moving target tracking, a feature that will benefit from the heritage of JWST and enable a broader range of solar system observations.
We are building a next-generation laser adaptive optics system, Robo-AO-2, for the UH 2.2-m telescope that will deliver robotic, diffraction-limited observations at visible and near-infrared wavelengths in unprecedented numbers. The superior Maunakea observing site, expanded spectral range and rapid response to high-priority events represent a significant advance over the prototype. Robo-AO-2 will include a new reconfigurable natural guide star sensor for exquisite wavefront correction on bright targets and the demonstration of potentially transformative hybrid AO techniques that promise to extend the faintness limit on current and future exoplanet adaptive optics systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.