Recently, there has been an increased interest in natural polysaccharides, in particular, chitosan, which are widely used in medicine and industry. Chitosan labeled with fluorescein dyes acquires additional optical properties that can be used in sensing and delivery systems. Mechanism of binding of a polymer to a label largely determines the field of its possible applications. The quantum chemical calculation using the B3LYP/aug-cc-pVDZ theory level has been made in order to contribute to the understanding of intermolecular interactions. The geometry of fluorescein, eosin Y, and erythrosin B in the dianionic, monoanionic, and neutral quinoid forms interacting with chitosan has been optimized and the absorption spectra have been calculated using the time-dependent density functional theory taking into account the solvent. The comparison of the calculated absorption spectra with the experimental data has shown a major role of the electrostatic mechanism in binding of anionic dyes to the protonated chitosan groups.
Fluorescein and its halogenated derivatives representing a family of homologous dyes with the gradual substitution of halogen atoms for hydrogen ones are widely used in biomedicine as fluorescent probes. This stimulates the intense experimental and theoretical studies of their fluorescent properties in aqueous solutions. However, the theoretical calculations are complicated by the necessity of taking into account the effect of a solvent (water) in the explicit form and the need for effective basic sets. This is especially important for the dyes that contain heavy atoms. In this study, the quantum-chemical investigations of the dianionic form of fluorescein and its Br- and I-substituted derivatives (eosin Y and erythrosin B) have been carried out using the time-dependent density functional theory (B3LYP functional) implemented in the GAMESS software suite. The effect of a solvent has been considered in the framework of the modified Thomas polarizable continuum model. The calculations have been made for vertical (absorption and emission) excitations in the adiabatic approximation and at the nonequilibrium solvation. The results obtained for the nonequilibrium solvation are in excellent agreement with the experimental data for fluorescein and its halogenated derivatives.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.