The x-ray polarization of compact objects in x-ray binaries allows us to understand the complex spacetimes surrounding these sources. XL-Calibur is a state-of-the-art, balloon-borne telescope that measures the linear polarization of stellar-mass black holes, neutron stars, and nebulae in the 15-80 keV energy band. The selected energy range allows for observing coronal emission from black holes while also enabling us to narrow down on emission models from neutron stars, pulsars, and magnetars. Early in 2024, XL-Calibur will be launched from Kiruna, Sweden for approximately 10 days to observe Cyg X-1 and Cyg X-3, or other sources chosen based on flux levels at the time of flight. Observations might be coordinated with the recently launched Imaging x-ray Polarimetry Explorer mission which measures polarization in the complimentary 2-8 keV band. Combined XL-Calibur and IXPE observations will yield information on both soft and hard x-rays allowing us to decompose the total emission from black holes into thermal disk and coronal. We discuss the characterization of the XL-Calibur CdZnTe detectors, the telescope mirror and truss setup, and preliminary results from our most recent flight.
The new generation of x-ray and gamma-ray detectors employ cryogenic detectors known as transition-edge sensors (TES) due to their high energy resolution and photon detection rates. These detectors require a refrigeration module that can operate at the transition temperature of the TES’s superconducting film—usually at mK temperatures. DR-TES consists of a novel mini-dilution refrigerator (DR) from Chase Research Cryogenics that can be used in balloon-borne missions to cool detectors to temperatures between 10 to 100mK. To test the viability of this DR module, we will be cooling down a SLEDGEHAMMER detector fabricated by the National Institute of Standards and Technology quantum sensor group. The SLEDGEHAMMER microcalorimeter uses TESs coupled to superconducting quantum interference devices which are in turn coupled to microwave resonators to detect x-rays and gamma-rays. We plan to fly the SLEDGEHAMMER detector cooled by the mini-DR on a stratospheric balloon flight in August of 2024 at Fort Sumner, NM. As a follow-up mission, 511-CAM will use a modified version of the detector to map the 511keV emission from the galactic center region.
X-ray polarization measurements can provide unique information that is complementary to that obtained through spectroscopic or imaging observations. However, there have been few cases where significant x-ray polarization has been observed. XL-Calibur, conducted in collaboration between Japan, the United States of America, and Sweden, is a balloon-borne mission that aims to conduct high-sensitivity polarimetric observations in the hard x-ray band from 15 to 80 keV. The Japanese group is in charge of developing the Hard X-ray Telescope (HXT) with high light-gathering power. Optical adjustments were completed in 2020, and the performance of the HXT was measured in June 2021 at the SPring-8 (synchrotron radiation facility in Hyogo, Japan). Subsequently, in July 2022, the first observation was conducted from Sweden to Canada. After the flight, the HXT was recovered, and we measured its performance again. By comparing the HXT performances before and after the flight, we found no significant changes that can affect the second flight scheduled in 2024.
KEYWORDS: X-ray telescopes, X-rays, Tunable filters, Signal processing, Hard x-rays, Simulations, Sensors, Analog electronics, Spatial resolution, Design and modelling
The NuSTAR (Nuclear Spectroscopic Telescope Array) mission launched in 2012, and it has successfully deployed the first orbiting telescopes to focus light in the high-energy x-ray range (3 - 79 keV), providing a wealth of new information about the sources of high-energy x-rays. Follow-up missions such as the proposed HEX-P, BEST, and FORCE could perform a deeper black hole census providing a more refined measurement of black hole spins, allowing for greater knowledge about supermassive black holes. These missions are motivated by recent breakthroughs in hard x-ray mirror technologies where mirrors made of monolithic silicon segments and mirrors made directly or through replication of shells demonstrate the feasibility of making hard x-ray mirrors with angular resolutions of five to ten arc seconds Half Power Diameter (HPD) compared to NuSTAR’s one arc minute HPD. Such a high angular resolution requires matched detectors (higher pixel density) to fully benefit from the achievable improved spatial resolution. In the above framework, the development of the HEXID ASIC, embedding is a novel pixelated front-end suitable for reading out a finely segmented CZT sensor, is presented. The required large dynamic range (from 2 keV to 180 keV) and low input noise (ENC ⪅ 20 e−) together with a small pixel size (150 μm) pose several design challenges in chip implementation. The chosen architecture of the front-end circuit and in-pixel processing blocks, together with the readout architecture of the registered signals and other adopted design solutions, driven by the quoted requirements, will be reviewed.
The 511 keV γ-ray emission from the galactic center region may fully or partially originate from the annihilation of positrons from dark matter particles with electrons from the interstellar medium. Alternatively, the positrons could be created by astrophysical sources, involving exclusively standard model physics. We describe here a new concept for a 511 keV mission called 511-CAM (511 keV gamma-ray camera using microcalorimeters) that combines focusing γ-ray optics with a stack of transition edge sensor microcalorimeter arrays in the focal plane. The 511-CAM detector assembly has a projected 511 keV energy resolution of 390 eV full width half maximum or better, and improves by a factor of at least 11 on the performance of state-of-the-art Ge-based Compton telescopes. Combining this unprecedented energy resolution with sub-arcmin angular resolutions afforded by Laue lens or channeling optics could make substantial contributions toward identifying the origin of the 511 keV emission through discovering and characterizing point sources and measuring line-of-sight velocities of the emitting plasmas.
XL-Calibur is a balloon-borne mission for hard x-ray polarimetry. The first launch is currently scheduled from Sweden in summer 2022. Japanese collaborators provide a hard x-ray telescope to the mission. The telescope’s design is identical to the Hard X-ray Telescope (HXT, conically-approximated Wolter-I optics) on board ASTROH with the same focal length of 12 m and the aperture of 45 cm, which can focus x-rays up to 80 keV. The telescope is divided into three segments in the circumferential direction, and confocal 213 grazing-incidence mirrors are precisely placed in the primary and secondary sections of each segment. The surfaces of the mirrors are coated with Pt/C depth-graded multilayer to reflect hard x-rays efficiently by the Bragg reflection. To achieve the best focus, optical adjustment of all of the segments was performed at the SPring-8/BL20B2 synchrotron radiation facility during 2020. A final performance evaluation was conducted in June 2021 and the experiment yields the effective area of 175 cm2 and 73 cm2 at 30 keV and 50 keV, respectively, with its half-power diameter of the point spread function as 2.1 arcmin. The field of view, defined as the full width of the half-maximum of the vignetting curve, is 5.9 arcmin.
This paper introduces a second-generation balloon-borne hard X-ray polarimetry mission, XL-Calibur. X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as pulsars and binary black hole systems. The XL-Calibur contains a grazing incidence X-ray telescope with a focal plane detector unit that is sensitive to linear polarization. The telescope is very similar in design to the ASTRO-H HXT telescopes that has the world’s largest effective area above ~10 keV. The detector unit combines a low atomic number Compton scatterer with a CdZnTe detector assembly to measure the polarization making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. It also contains a CdZnTe imager at the bottom. The detector assembly is surrounded by the improved anti-coincidence shielding, giving a better sensitivity. The pointing system with arcsecond accuracy will be achieved.
XL-Calibur is a balloon-borne hard X-ray polarimetry mission, the first flight of which is currently foreseen for 2021. XL-Calibur carries an X-ray telescope consists of consists of 213 Wolter I grazing-incidence mirrors which are nested in a coaxial and cofocal configuration. The optics design is nearly identical to the Hard X-ray Telescope (HXT) on board the ASTRO-H satellite. The telescope was originally fabricated for the Formation Flying Astronomical Survey Telescope (FFAST) project. However, the telescope can be used for XL-Calibur, since the FFAST project was terminated before completion. The mirror surfaces are coated with Pt/C depth-graded multilayers to reflect hard X-rays above 10 keV by Bragg reflection. The effective area of the telescope is larger than 300 cm^2 at 30 keV. The mirrors are supported by alignment bars in the housing, and each of the bars has a series of 213 grooves to hold the mirrors. To obtain the best focus of the optics, the positions of the mirrors have to be adjusted by tuning the positions of the alignment bars. The tuning of the mirror positions is conducted using the X-ray beam at the synchrotron facility SPring-8 BL20B2, and this process is called optical tuning. First the positions of the second reflectors are tuned, and then those of the first reflectors are tuned. We did the first optical tuning in Jan 2020. The second tuning will be planned between April to July, 2020. This paper reports the current status of the hard X-ray telescope for XL-Calibur.
The Lynx next-generation soft X-ray telescope is being proposed to significantly increase the effective area of Chandra while keeping sub-arcsecond imaging resolution. To produce the necessary optics, we propose to build and test a novel class of low-voltage thin-film actuators based on electroactive polymers to address the need for adjustable mirror control in future high-resolution X-ray missions such as Lynx. Electroactive polymers can produce high strains at low voltages, being able to correct the deformations that submillimeter-thick mirror shells will experience in future X-ray missions. Fabrication of polymer-based thin films is a low-cost, scalable technology that can be easily translated to production by industrial partners. With processing temperatures below 140°C, electroactive polymer films can be deposited on glass mirror substrates without risk of introducing additional slumping errors. With the high imaging resolution enabled by our proposed mirror correction technology, Lynx will be capable of detecting the first accreting black holes, study the evolution of galaxies and growth of cosmic structure, and verify the existence of a Warm-Hot Intergalactic Medium (WHIM) that could account for the large fraction of missing baryonic matter in the Universe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.