Cleaning of substrates prior to optical coating is an important step in the manufacturing of high performance optical components. It is well known that the ultra-sonic frequency used during substrate cleaning has a strong influence on the quality of the cleaning process and the number of remaining particles on the surface. Therefore, we have investigated the influence of ultra-sonic frequency during substrate cleaning on the laser resistance of antireflection coatings. For this purpose, a SiO2 / Ta2O5 AR-coating for a normal angle of incidence at 1064 nm was deposited onto fused silica substrates. Prior to deposition, the substrates were cleaned with cleaning processes. The applied ultra-sonic frequencies were 40, 80, 120 and 500 kHz. After deposition the LIDT was measured using a 1064 nm ns-pulsed laser test bench. It turned out that the different ultra-sonic-cleaning processes have a strong influence on the number of remaining particles on the surface of the cleaned samples. The counted number of particles with sizes greater < 83 nm were between 1320 and 12 particles for the different applied ultra-sonic frequencies. In consequence the different cleaned and AR-coated samples show different laser damage behavior. Nevertheless the measured particle density does not totally explain the differences in laser resistance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.