Multi-domain operations drastically increase the scale and speed required to generate, evaluate, and disseminate command and control (C2) directives. In this work we evaluate the effectiveness of using reinforcement learning (RL) within an Army C2 system to design an artificial intelligence (AI) agent that accelerates the commander and staff’s decision making process. Leveraging RL’s superior ability to explore and exploit produces novel strategies that widen a commander’s decision space without increasing cognitive burden. Integrating RL into an efficient course of action war-gaming simulator and training hundreds of thousands of simulated battles using the DoD supercomputing resources generated an AI that produces acceptable strategic actions during a simulated operation. Moreover, this approach played an unexpected but significant role in strengthening the underlying wargame simulation engine by discovering and exploiting weaknesses in its design. This highlights a future role for the use of RL to test and improve DoD systems during their development.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.