We report on the current version of the optical sectioning programmable array microscope (PAM) implemented with a single digital micro-mirror device (DMD) spatial light modulator utilized as a mask in both the fluorescence excitation and emission paths. The PAM incorporates structured illumination and structured detection operating in synchrony. A sequence of binary patterns of excitation light in high definition format (1920×1080 elements) is projected into the focal plane of the microscope at the 18 kHz binary frame rate of the Texas Instruments 1080p DMD. The resulting fluorescent emission is captured as two distinct signals: conjugate (c, ca. “on-focus”) consisting of light impinging on and deviated from the “on” elements of the DMD, and the non-conjugate (nc, ca. “out-of-focus”) light falling on and deviated from the “off” elements. The two distinct, deflected beams are optically filtered and detected either by two individual cameras or captured as adjacent images on a single camera after traversing an image combiner. The sectioned image is gained from a subtraction of the nc image from the c image, weighted in accordance with the pattern(s) used for illumination and detection and the relative exposure times of the cameras. The widefield image is given by the sum of the c and nc images. This procedure allows a high duty cycle (typically 25-50%) of on-elements in the excitation patterns and thus functions with low light intensities, preventing saturation and minimizing photobleaching of sensitive fluorophores. The corresponding acquisition speed is also very high, limited only by the bandwidth of the camera(s) (100 fps full frame with the sCMOS camera in current use) and the optical power of the light source (lasers, large area LEDs). In contrast to the static patterns typical of SIM systems, the programmable array allows optimization of the patterns (duty cycle, feature size and distribution), thus enabling a wide range of applications, ranging from patterned photobleaching, (e.g., FRAP, FLIP) and photoactivation, spatial superresolution, automated adaptive tracking and minimization of light exposure (MLE), and photolithography.
We report progress on the construction of an optical sectioning programmable array microscope (PAM) implemented
with a digital micro-mirror device (DMD) spatial light modulator (SLM) utilized for both fluorescence illumination and
detection. The introduction of binary intensity modulation at the focal plane of a microscope objective in a computer
controlled pixilated mode allows the recovery of an optically sectioned image. Illumination patterns can be changed very
quickly, in contrast to static Nipkow disk or aperture correlation implementations, thereby creating an optical system
that can be optimized to the optical specimen in a convenient manner, e.g. for patterned photobleaching, photobleaching
reduction, or spatial superresolution.
We present a third generation (Gen-3) dual path PAM module incorporating the 25 kHz binary frame rate TI 1080p
DMD and a newly developed optical system that offers diffraction limited imaging with compensation of tilt angle
distortion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.