In this work, we present the auto-clustering method which can be used for pattern recognition tasks and applied to the training of a metric convolutional neural network. The main idea is that the algorithm creates clusters consisting of classes similar from a network’s point of view. The usage of clusters allows the network to pay more attention to classes that are hard to differ. This method improves the generation of pairs during the training process, which is a current problem because the optimal generation of data significantly affects the quality of training. The algorithm works in parallel with the training process and is fully automatic. To evaluate this method we chose the Korean alphabet with the corresponding PHD08 dataset and compared our auto-clustering with random-mining, hard-mining, distance-based mining. Opensource framework Tesseract OCR 4.0.0 was also considered to evaluate the baseline.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.