Objective of this paper is to evaluate the performance of GaN HEMTs for high temperature applications. A sample
AlGaN/GaN HEMT structure is investigated using empirical data to evaluate the device performance at high
temperatures. Input transfer and output characteristics are the key focus along with transconductance and saturation
current. Intrinsic device parameters were calculated using measured S-parameter data at various frequencies under
different bias conditions and temperatures. Transconductance found at 398 °K is 2.5 mS for the entire gate width. DC
characteristics of the fabricated devices were examined at temperatures ranging from 295 °K to 363 °K. Maximum drain
current measured at room temperature was 214 mA which reduced to 192 mA at 363 °K. Reduction in saturation drain
current is found due to decrease in saturation carrier velocity and two dimensional electron density. Structure based
simulation tool ATLAS from Silvaco Int. is used for numerical simulations. The simulated device performance is in
good agreement with the empirical results. Experimental results for the critical parameters suggest that the device can
operate in the GHz Range for temperature up to 600 °K. Further enhancement of the model device is suggested upon
reviewing the measured results to improve the high-temperature performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.