KEYWORDS: Video, Wavelets, Discrete wavelet transforms, Video coding, Denoising, Wavelet transforms, 3D image processing, 3D imaging standards, Visualization, 3D video compression
This paper introduces an anisotropic decomposition structure of a
recently introduced 3-D dual-tree discrete wavelet transform (DDWT),
and explores the applications for video denoising and coding. The
3-D DDWT is an attractive video representation because it isolates
motion along different directions in separate subbands, and thus
leads to sparse video decompositions. Our previous investigation
shows that the 3-D DDWT, compared to the standard discrete wavelet
transform (DWT), complies better with the statistical models based
on sparse presumptions, and gives better visual and numerical
results when used for statistical denoising algorithms. Our research
on video compression also shows that even with 4:1 redundancy, the
3-D DDWT needs fewer coefficients to achieve the same coding quality
(in PSNR) by applying the iterative projection-based noise shaping
scheme proposed by Kingsbury.
The proposed anisotropic DDWT extends the superiority of isotropic
DDWT with more directional subbands without adding to the
redundancy. Unlike the original 3-D DDWT which applies dyadic
decomposition along all three directions and produces isotropic
frequency spacing, it has a non-uniform tiling of the frequency
space. By applying this structure, we can improve the denoising
results, and the number of significant coefficients can be reduced
further, which is beneficial for video coding.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.