This paper presents the radiometric and noise characteristics of 12-bit SI-1920HD cameras built from the AltaSens ProCamHD 3560 FPA as a function of integration time and temperature. Our measurements are for two integration time regions: 1 to 50 millisecond, which is standard for video operation; and 1 to 240 seconds, of possible use for stellar observations. For 1 to 50 millisecond integration times, the cameras are extremely linear with a Gaussian-like dark frame. As we increased to seconds-long integration times, the camera initially remains radiometrically linear, but develops a dark frame with the vast majority of pixels at dn=5. Further increases in integration time eventually result in a saturated dark frame with all pixels at dn=4095. Reducing the operating temperature to -7.2°C increased the integration times at which the camera's two transitions occur by a factor of 20. The calibration parameters determined from our measurements were applied to the image data collected by Dorland et al. (these proceedings).
KEYWORDS: Space operations, Robotics, Machine vision, Satellites, Sensors, Control systems, Analytical research, Aerospace engineering, Space robots, Algorithm development
SUMO, or Spacecraft for the Universal Modification of Orbits, is a risk reduction program for an advanced servicing spacecraft sponsored by the Defense Advanced Research Projects Agency and executed by the Naval Center for Space Technology at the Naval Research Laboratory in Washington, DC. The purpose of the program is to demonstrate the integration of machine vision, robotics, mechanisms, and autonomous control algorithms to accomplish autonomous rendezvous and grapple of a variety of interfaces traceable to future spacecraft servicing operations. The laboratory demonstration is being implemented in NRL’s Proximity Operations Test Facility, which provides precise six degree of freedom motion control for both the servicer and customer spacecraft platforms. This paper will describe the conceptual design of the SUMO advanced servicing spacecraft, a concept for a near term low-cost flight demonstration, as well as plans and status for the laboratory demonstration. In addition, component requirements for the various spacecraft subsystems will be discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.