The Habitable Worlds Observatory (HWO) will need unprecedented stability in order to achieve the desired science performance. Achieving this stability will push the state of the art in structural damping, environmental shielding, thermal sensing and heater control, control architecture, etc. and will even involve consideration of effects that were previously negligible such as low-energy micrometeorites and bulk charging of mirrors. In this paper, we explore the interactions between basic architectural trades and the ability of the observatory to meet the stability requirements. As an example, we discuss how the need for an ultra-stable structure translates to requirements on an environmental shield. We then look at options for the architecture of such a shield and interactions between these possible shield configurations and other design considerations such as verifiability, manufacturability, mass, risk, serviceability, and lifetime.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.