Wetlands are very valuable areas because they provide a wide range of ecosystems services therefore modeling of wetland areas is very relevant, however, the most widely used hydrological models were developed in the 90s and usually are not adjusted to simulate wetland conditions. In case of wetlands including interception storage into the model’s calculation is even more challenging, because literature data hardly exists. This study includes the computation of interception storage capacity based on Landsat 7 image and ground truthing measurements conducted in the Biebrza Valley, Poland. The method was based on collecting and weighing dry, wet and fully saturated samples of sedges. During the experiments measurements of fresh/dry biomass and leaf area index (LAI) were performed. The research was repeated three times during the same season (May, June and July 2013) to observe temporal variability of parameters. Ground truthing measurements were used for the validating estimation of parameters derived from images acquired in a similar period as the measurements campaigns. The use of remote sensing has as major advantage of being able to obtain an area covering spatially and temporally distributed estimate of the interception storage capacity.
Results from this study proved that interception capacity of wetlands vegetation is changing considerably during the vegetation season (temporal variability) and reaches its maximum value when plants are fully developed. Different areas depending on existing plants species are characterized with different values of interception capacity (spatial variability). This research frames within the INTREV and HiWET projects, funded respectively by National Science Centre (NCN) in Poland and BELSPO STEREO III.
Determination and description of groundwater systems is essential for the management and development of ecological values, especially in the valley parts of river basins. At the land surface, groundwater systems appear as infiltration (relatively dry) and discharge zones (relatively wet). Groundwater discharge zones offer a high potential for nature values because of their constant moisture presence and their specific water quality. Current methods for the determination of discharge and infiltration zones use either detailed time-consuming fieldwork or data intensive numerical simulation models. Consequently, there is a direct need for repeatable, area covering, mapping possibilities for the determination of moisture gradients and more specifically discharge and infiltration zones. Within the framework of the CASI-SWIR measuring campaign 2002, the Department of Hydrology and Hydraulic Engineering of the Vrije Universiteit Brussel (VUB) executed an airborne hyperspectral remote sensing and field campaign in the Doode Bemde to analyze moisture gradients in the Doode Bemde, a riparian nature reserve. The main objective of the study is to test the best hyperspectral analysis method, using the hyperspectral CASI-SWIR data, for the known, based upon field and simulation data, moisture gradients in the Doode Bemde area. Simultaneously with the airborne hyperspectral campaign, field measurements of soil moisture, groundwater levels, vegetation temperature and spectral characteristics of some key vegetation species (phreatophytes) were performed. The method of analysis consists of statistical comparison of moisture gradients, obtained from measurements and simulations, with individual bands, a combination of bands and multivariate derivatives. The paper describes the set-up of the field and airborne measurement campaign, the methodology of analysis as well as first analysis results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.