Multidimensional fluorescence microscopy data are often collected under imaging conditions that cause aberrations. For proper deconvolution of such data, one needs to generate a Point Spread Function (PSF) that includes the aberrations. Even if it is possible to model the imaging aberrations theoretically, there remains the problem of modifying the PSF accordingly. Measured PSFs are difficult to modify, and theoretical PSFs lack lens- and system-specific features. Phase retrieval approaches can be used to produce a compact and modifiable description of a microscope system, including its measured, system-specific performance. These pupil functions can be used in a depth-dependent deconvolution to correct for geometric distortions and improve restoration of relative intensities compared to spatially invariant deconvolution using unaberrated PSFs.
The three-dimensional imaging properties of a light microscope are traditionally described through an intensity point spread function (PSF) or its Fourier transform, the optical transfer function (OTF). However, the imaging properties can be more compactly described by a generalized two-dimensional pupil function. Use of the pupil function allows easy modification of an observed PSF to introduce known aberrations, a much more difficult task when using a PSF or OTF. Unfortunately, it is
not straightforward to determine the complex-valued pupil function from the measured intensity PSF, because of the lack of phase information. This is the problem of phase retrieval. Several phase retrieval algorithms have been developed for two-dimensional imaging in astronomy. We have modified one such algorithm to be appropriate for the high-aperture, non-paraxial case of high resolution light microscopy. PSFs reconstructed from phase-retrieved pupil functions, modified by calculated aberrations closely reproduce the features of measured, aberrated PSFs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.