Electron beam (E-beam) direct write (EBDW) lithography is a worldwide reference technology used in laboratories, universities, and pilot line facilities for research and development. Due to its low writing speed, EBDW has never been recognized as an acceptable industrial solution, except for optical mask manufacturing. Nevertheless, its natural high-resolution capability allows for low-cost patterning of advanced or innovative devices prior to their high-volume manufacturing ramp-up. Due to its full versatility with almost all types of chemically amplified resists, EBDW is a perfect complementary solution to optical lithography. We demonstrate the compatibility of EBDW lithography with advanced negative tone development resists and the possibility of setting up a hybrid E-beam/193i lithography process flow with high performance in terms of resolution and mix and match overlay. This high-end lithography alliance offers flexibility and cost advantages for device development research and development, as well as powerful possibilities for specific applications such as circuit encryption, as discussed at the end of our study.
KEYWORDS: Electron beam direct write lithography, Lithography, Semiconducting wafers, Electron beam lithography, Optical alignment, Overlay metrology, Optical lithography, Design and modelling, Photoresist processing, Deep ultraviolet
Electron Beam Direct Write (EBDW or E-Beam) Lithography is a worldwide reference technology used in laboratories, universities and pilot line facilities for Research and Developments. Due to its low writing speed, E-Beam direct write has never been recognized as an acceptable industrial solution, exception made for optical mask manufacturing. Nevertheless, its natural high-resolution capability allows low-cost patterning of advanced or innovative devices ahead of their high-volume manufacturing ramp-up. Thanks to its full versatility with almost all type of chemically amplified resists, EBDW is a perfect complementary solution to optical lithography. This paper demonstrates the compatibility of EBDW lithography with advanced Negative Tone Development (NTD) resist and the possibility to set-up an hybrid E-Beam/193i lithography process flow with high performances in terms of resolution and mix & match overlay. This high-end lithography strategy alliance offers flexibility and cost advantages for device development R&D but also powerful possibilities for specific applications such circuit encryption as discussed at the end of this work-study.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.