We describe a new concept for future interferometric observations. Our laboratory experiment simulates an interferometer with two telescopes observing through different volumes of atmospheric turbulence. We simulate both vertical and horizontal propagation through the atmosphere; the latter mimics free-space beam propagation without the need for vacuum pipes or fiber optics. Practically, we simulate the effects of atmospheric turbulence using numerically calculated Kolmogorov phase screens injected onto a spatial light modulator. We correct this distorted wavefront using an adaptive optics system to determine the range of turbulence conditions over which we can detect fringes from the two telescopes. Our experiment lays the groundwork for investigating the potential of having movable telescopes in which light propagates from the telescopes to the beam combiner through free space.
We describe versatile turbulence simulator for testing and calibration of new techniques for high-resolution imaging of objects outside the Earth’s atmosphere using ground-based instrumentation. Examples here include: dynamic aperture diversity, wave front sensing using multi-aperture phase retrieval, and free-space beam propagation for rapidly re-configurable interferometers. Used in the testing of all of these, the simulator uses a high resolution spatial light modulator in tandem with a lower resolution deformable mirror to simulate atmospheric phase distortions over a wide range of turbulence conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.