The last few years have shown the success of silicon nitride platforms for ultra-low loss tightly confining waveguides. In addition to the low optical losses, the high Kerr nonlinearity, the high power handling capability and small bending radii makes the platform ideal for nonlinear photonics. Therefore, the potential for applications is huge: LiDAR, microwave optics, quantum photonics, neuromorphic computing, telecommunication, sensors… Here, we present our 200mm platform based on 800nm-thick LPCVD Si3N4 with optical losses below 5dB/m. It is completed with a set of photonic components: grating couplers, edge couplers, MMI, directional couplers, Y-junction and AWG multiplexer, which constitute the building blocks for advanced applications.
Wavelength multiplexing (WMUX) channel transmission bandwidth should be sufficiently large to compensate for thermal drifts of the emitters at the transmitter side of the link all over their functional windows in terms of driving currents and operational temperature of the environment. As well as that, a nearly absolute thermal insensitiveness of the WMUX device performance itself has to be ensured across the link over the widest possible temperature range. In other terms, devices have to exhibit the smallest thermo-optic coefficient, in order to fulfill system specifications under any thermal condition applied to the optical link. In this paper, we present coarse wavelength division multiplexing (CWDM), echelle grating (EG) WMUX to operate in the O-band (1310 nm) designed accordingly to 4 x 20-nm-spaced standard and fabricated on 200-mm Silicon Nitride-on-Insulator (SiNOI). Taking advantage of PECVD SiN low thermooptic coefficient compared to crystalline silicon, thermally-insensitive demultiplexers can be obtained. The device show insertion losses as low as 1 dB, interchannel crosstalk averaging -25 dB, non-uniformity of 1.3 dB and a -1 dB and -3 dB bandwidths of nearly 10 nm and 13 nm, respectively. Such wide channel bandwidths allow the compensation of wavelength drifts due to the different thermal environments between the transmitter and the receiver as well as the detuning of emitters at the transmitter side of the link. The EG shows a quasi-absolute thermal insensitiveness in the temperature operation range from 20 °C up to 80 °C, highlighting the thermal robustness of such SiNOI EG devices. A thermally-dependent chromatic dispersion averaging less than 13 pm/K over different channels has been estimated, thus 6x times less than similar devices when realized on standard SOI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.