The successful achievement of the scientific objectives of the Visible Telescope (VT) in the Space Multi-band Variable Object Monitor (SVOM) mission relies heavily on high-precision quantum efficiency calibration. The calibration process for the VT CCD presents a challenge due to the requirement for extremely low radiation levels given the long integration time of the CCD. To address the difficulty in accurately measuring such low radiance, a two-step calibration method is employed. This method involves the use of two photodiodes, one positioned at the CCD location and the other in an integrating sphere. In the first step, the proportional relationship between the measured illuminance values of the two photodiodes is calibrated under high illumination conditions. This step establishes a reliable reference for subsequent calibrations. In the second step, the CCD is calibrated using the integrating sphere photodiode under low illumination conditions. The measured illuminance is then converted to the CCD position. Experimental results have demonstrated the effectiveness of this two-step calibration method, achieving a quantum efficiency calibration uncertainty of 1.7%. This approach provides a reliable and accurate means of calibrating the quantum efficiency of the CCD in the VT instrument.
KEYWORDS: Image processing, Medical imaging, Data backup, Video, Video processing, Image acquisition, Field programmable gate arrays, Statistical analysis, Visualization, Surgery
This paper designs a new platform for medical image transfer and process. The hardware part of the platform is based on FPGA, USB and RS232. The software part is based on Windows platform, basing on MFC dialog application developed with C + + programming tools in Microsoft Visual Studio 2010. The platform collects images from medical devices and uses the hardware platform to transmit them to PC for display, the application program on PC can realize the image data process and analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.