Through a novel micro-processing mechanism in birefringent crystals proposed in this work, a coupler containing twin depressed cladding waveguides have been achieved in Nd:GdVO4 laser crystals. By employing single-scan of femtosecond laser writing, twin tracks with different depths separated by a distance of 70μm were produced due to the birefringence of Nd:GdVO4 crystal. The adjacent 30μm-diameter cladding waveguides, which consist of a 2×2 coupler with a separation of 70μm in a 4-mm-long crystal sample, were inscribed simultaneously. The ratio of output power division from both waveguides was approximately 10.5:1 at 633nm. Continuous-wave lasing was realized in the waveguide coupler platform under the direct optical pump at 808nm. This work indicates a great potential for femtosecond laser inscribed symmetry structures such as waveguide couplers in birefringent crystals based on the proposed micro-processing mechanism.
We report on Y-branch superficial depressed-cladding waveguides fabricated by femtosecond laser writing of MgO:LiTaO3 crystal. The cladding waveguides with a rectangular cross-section are single mode for both transverse electric and transverse magnetic polarization, and show good transmission properties at a telecommunication wavelength of 1.55 μm. Divergence angles as large as 2.6 deg are successfully achieved in the splitters with nearly equalized splitting ratios (1:1). The fabricated shallow structures are excellent photonic elements for optoelectronic applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.