The majority of user experiments at the high repetition-rate free electron laser (FEL) facility FLASH are of pump-probe type, combining the extreme ultraviolet (XUV) or soft x-ray radiation from the FEL with ultrashort pulses generated by optical lasers. In this contribution, we demonstrate the advantages of using high-power Yb:YAG lasers with subsequent nonlinear pulse compression stages based on multi-pass cells (MPC). The approach enables the combination of hundreds of kHz to MHz repetition-rates, hundreds of watts of average powers and excellent intensity stabilities. We present the characteristics of the MPC-based pump-probe laser at the FLASH plane-grating beamlines. Furthermore, we report pulse compression to 8.2 fs pulse duration and the seeding of an optical parametric amplifier generating mid-IR radiation tunable from 1.4 µm to 16 µm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.