As a new kind of ionic-driven smart materials, ionic polymer metal composite (IPMC ) is normally fabricated by
depositing noble metal (gold, platinum, palladium etc.) on both sides of base membrane (Nafion, Flemion etc.) and
shows large bending deflection under low voltage. In the process of fabricating IPMC, surface roughening of base
membrane has a significant effect on the performance of IPMC. At present, there are many ways to roughen the base
membrane, including physical and chemical ways. In this paper, we analyze the effects of different surface treatment
time by plasma etching on surface resistance and mechanical properties of IPMCs fabricated by the treated base
membranes. Experimental results show that the base membrane treated by plasma etching displays uniform surface
roughness, consequently reducing IPMC’s surface resistance effectively and forming more uniform and homogeneous
external and penetrative electrodes. However, due to the use of reactive gas, the plasma treatment leads to complex
chemical reaction on Nafion surface, changing element composition and material properties and resulting in the
performance degradation of IPMC. And sandblast way should be adopted and improved without any changes on element
and material structure.
Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster
recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the
demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart
materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high
functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for
actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a
soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First,
according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators
fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to
form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was
used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube.
The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator.
Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed.
Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.