KEYWORDS: Structural health monitoring, Data communications, Waveguides, Data transmission, Receivers, Signal processing, Composites, Sensors, Transceivers
A beneficial feature in guided-wave SHM systems is represented by their additional capability for acoustic data communications. Here, information about the structural integrity might be transferred between sensor nodes across the monitored mechanical waveguide itself without the need for cabling. The transferred information can be given e.g. by a numerical damage indicator which is crucially needed for the diagnostic capability inherent to the respective SHM system. In such application scenarios, the installed piezoelectric transceivers transmit encoded bit sequences which are subsequently reconstructed at the receiving piezoelectric transceiver. This combined inspection and communication approach has been recently presented in a metallic plate, as well as the effectiveness of communication involving an orthotropic composite plate has also been analyzed. The present work extends recent studies demonstrating the effective deployment of elastic guided waves (GWs) for multiple-in and multiple-out (MIMO) data transmission in the framework of an SHM application. Customized and miniaturized low-power communication nodes have been developed for this purpose. They are positioned in a spatially distributed and permanently installed network. Cable-free exchange of encoded information across a stiffened carbon-fiber reinforced plastics (CFRP) panel is studied. A combination of square-wave excitation sequences and frequency-division multiplexing (FDM) is explored for simultaneous communication with multiple nodes aiming at energy-aware application scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.