We present a novel approach for handling complex information of lesion segmentation in CT follow-up studies. The backbone of our approach is the computation of a longitudinal tumor tree. We perform deep learning based segmentation of all lesions for each time point in CT follow-up studies. Subsequently, follow-up images are registered to establish correspondence between the studies and trace tumors among time points, yielding tree-like relations. The tumor tree encodes the complexity of the individual disease progression. In addition, we present novel descriptive statistics and tools for correlating tumor volumes and RECIST diameters to analyze significance of various markers.
Purpose: Hippocampus contouring for radiotherapy planning is performed on MR image data due to poor anatomical visibility on computed tomography (CT) data. Deep learning methods for direct CT hippocampus auto-segmentation exist, but use MR-based training contours. We investigate if these can be replaced by CT-based contours without loss in segmentation performance. This would remove the MR not only from inference but also from training.
Approach: The hippocampus was contoured by medical experts on MR and CT data of 45 patients. Convolutional neural networks (CNNs) for hippocampus segmentation on CT were trained on CT-based or propagated MR-based contours. In both cases, their predictions were evaluated against the MR-based contours considered as the ground truth. Performance was measured using several metrics, including Dice score, surface distances, and contour Dice score. Bayesian dropout was used to estimate model uncertainty.
Results: CNNs trained on propagated MR contours (median Dice 0.67) significantly outperform those trained on CT contours (0.59) and also experts contouring manually on CT (0.59). Differences between the latter two are not significant. Training on MR contours results in lower model uncertainty than training on CT contours. All contouring methods (manual or CNN) on CT perform significantly worse than a CNN segmenting the hippocampus directly on MR (median Dice 0.76). Additional data augmentation by rigid transformations improves the quantitative results but the difference remains significant.
Conclusions: CT-based training contours for CT hippocampus segmentation cannot replace propagated MR-based contours without significant loss in performance. However, if MR-based contours are used, the resulting segmentations outperform experts in contouring the hippocampus on CT.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.