We present recent progress in developing miniaturized optical transmitters and receiver amplifiers for space communications. Three C-band high-speed optical transmitter designs are presented: a bespoke 300 mW version as part of TNO’s “SmallCat” terminal to fly on-board NordSat and two variants that provide 300 mW and 3 W of optical power complying to standard cubesat form factors. In addition to these transmitters, an ultra-small form factor, high gain, low noise amplifier, for boosting received signals is presented.
We present recent progress in developing miniaturized optical transmitters and receiver amplifiers for space communications. Three C-band high-speed optical transmitter designs are presented: a bespoke 300 mW version as part of TNO’s “SmallCat” terminal to fly on-board NordSat and two variants that provide 300 mW and 3 W of optical power complying to standard cubesat form factors. In addition to these transmitters, an ultra-small form factor, high gain, low noise amplifier, for boosting received signals is presented.
We present the development and qualification testing of G&H multi-channel fiber amplifier unit developed for satellite to ground free space laser communications. The qualification results show robust functional and structural performance following stress at all 3 possible excitation axes with high level sine vibration, random vibration and mechanical shock as well as thermal cycling between survival and operating temperatures in vacuum condition.
We present the space qualification of a multi-channel mid-power booster optical fiber amplifier (OFA) suitable for 1550nm LEO satellite to ground laser communication downlinks. The end-to-end OFA development from conceptual design all the way through qualification testing followed ECSS-level Product Assurance guidelines for deployed materials, components and processes. The environmental qualification test programme relied on ECSS-E-10-03C which is the ESA standard for qualification testing of space segment hardware. The qualification results show robust functional and structural performance following stress at all 3 possible excitation axes with high level sine vibration, random vibration and mechanical shock as well as thermal cycling between survival and operating temperatures in vacuum condition. In addition to thermo-mechanical tests, proton and gamma radiation tests performed on component and sub-assembly level suggest that the OFA is capable to deliver its performance under ionizing and non-ionizing radiation levels found in the LEO orbit. The OFA has been delivered for system integration into the Optel-μ terminal, applicable to small satellite platforms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.