Quantum networks rely on the efficient coupling of coherent quantum memories to photonic links. Tin-vacancy centers (SnV) have emerged as promising candidates for the implementation of an optically interfaced quantum memory based on their long spin coherence times at temperatures above 1K. To enhance their interaction with photons SnV centers need to be integrated with high-quality photonic structures. In this work, we report the enhancement of coherent emission of SnV centers by coupling them to a nanophotonic waveguide resonator. We observe strong intensity enhancement of the photon emission when the cavity is resonant with the color center. We demonstrate strong enhancement of the radiative recombination rate of SnV centers resulting in their predominant emission via the coherent zero-phonon line and into the cavity mode. These results are a significant step toward color-center-based quantum information processing applications without the need for dilution refrigerators.
Building quantum networks requires efficient coupling of solid-state quantum emitters to photonic devices. Tinvacancy center (SnV) has attracted much interest for having long spin coherence times at temperatures above 1 K. Employing SnV as an optically addressable qubit requires integration with photonic structures to both route the emitted photons and enhance the light-matter interaction. We present incorporation of high-quality SnV centers with narrow linewidths in suspended diamond waveguides. Furthermore, we fabricate photonic crystal cavities in diamond with embedded SnV centers. We observe strong intensity enhancement of the photon emission when the cavity is resonant with the color center. Time-resolved photoluminescence measurements confirm that this effect is due to radiative Purcell enhancement of the spontaneous emission. Finally, we demonstrate Stark tuning of transition frequency of SnV centers, essential for multiemitter applications. These results are a significant step toward color-center-based quantum information processing applications without the need for dilution refrigerators.
Due to their excellent optical properties, quantum dots are promising for applications in photonic quantum technologies. For on-demand single-photon generation, a two-level system given by an excitonic transition is typically excited with a resonant laser pulse of area π. This prepares the two-level system in its excited state from where it spontaneously emits a single photon. However, emission that occurs already during the presence of the laser pulse allows for re-excitation and, thus, multi-photon emission which limits the single-photon purity [1].
In contrast, when exciting the system with a pulse of area 2π, the system is expected to be returned to the ground state. However, in this case emission during the presence of the pulse is most likely to occur when the system is in its excited state – exactly after an area of π has been absorbed. This restarts the Rabi oscillation with a pulse area of π remaining in the pulse which leads to re-excitation with near-unity probability and the emission of a second photon within the excited state lifetime [2,3].
Finally, we present the generation of single photons with ultra-low multi-photon probability [4]. Using two-photon excitation of the bi-exciton suppresses re-excitation and improves the single photon purity by several orders of magnitude for short pulses.
[1] K. A. Fischer, et al., New J. Phys. 18, 113053 (2016)
[2] K. A. Fischer, et al., Nature Physics 13, 649-654 (2017)
[3] K. A. Fischer, et al., Quantum Sci. Technol. 3, 014006 (2017)
[4] L. Hanschke et al., arxiv: 1801.01672 (2018)
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.