The 1.2-m primary mirror supporting systems are composed of axial support system with whiffletree structure and lateral support system with 6 tangent links. With the simulation based on the finite element analysis (FEA), the 18 points positions of the axial support are determined and the bottom chamber structure of the primary mirror is improved. In order to reduce the mirror surface deformation, the assembly stress on the primary mirror is reduced by optimizing the lateral support structure. The analysis results demonstrated that the root-mean-square (RMS) of the surface deformation is 10.9nm when the primary mirror points vertically. Meanwhile the RMS of the surface deformation is 10.3nm when the primary mirror points horizontally.
The forced convective heat transfer with the advantages of reliability and durability is widely used in cooling the laser gain medium. However, a flow direction induced temperature gradient always appears. In this paper, a novel cooling configuration based on longitudinal forced convective heat transfer is presented. In comparison with two different types of configurations, it shows a more efficient heat transfer and more homogeneous temperature distribution. The investigation of the flow rate reveals that the higher flow rate the better cooling performance. Furthermore, the simulation results with 20 L/min flow rate shows an adequate temperature level and temperature homogeneity which keeps a lower hydrostatic pressure in the flow path.
A new pump-shaping scheme for a LD face-pumped Nd:YAG slab laser amplifier is proposed, aiming to achieve uniform pump distributions. Plano-concave cylindrical mirror arrays are used to homogenize the pump distributions in the LD slow axes, and meanwhile optical-waveguide structures are used for the LD fast axes. Simulations based on ray tracing method indicate that the scheme effectively realizes uniform pump intensity distributions. The fluorescence distributions and small signal gains at different locations both verify the pump uniformity reaches higher than 90%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.