Spin-orbit torque is a current-induced transfer of angular momentum from an atomic lattice to magnetic order. It is a promising mechanism to write magnetic memories and drive spin torque oscillators. Since its inception, the list of spin-orbit torque mechanisms has grown beyond the conventional spin Hall and Rashba-Edelstein mechanisms to include “unconventional” mechanisms, arising from spin and orbital current generation in ferromagnetic layers, nonmagnetic layers, and their interfaces. In this talk, we use micromagnetic, semiclassical, and first principles calculations to show that unconventional spin-orbit torques are potentially important for devices, from causing nonlocal spin torques in ferromagnetic trilayers to enabling large amplitude, easy-plane spin-orbit torque oscillators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.