KEYWORDS: Visualization, Photovoltaics, Visible radiation, Retina, Neurons, Electrodes, In vivo imaging, Information visualization, In vitro testing, Near infrared
Patients with retinal degeneration lose sight due to gradual demise of photoreceptors. Electrical stimulation of
the surviving retinal neurons provides an alternative route for delivery of visual information. Subretinal photovoltaic
arrays with 70μm pixels were used to convert pulsed near-IR light (880-915nm) into pulsed current to stimulate the
nearby inner retinal neurons. Network-mediated responses of the retinal ganglion cells (RGCs) could be modulated by
pulse width (1-20ms) and peak irradiance (0.5-10 mW/mm2). Similarly to normal vision, retinal response to prosthetic
stimulation exhibited flicker fusion at high frequencies, adaptation to static images, and non-linear spatial summation.
Spatial resolution was assessed in-vitro and in-vivo using alternating gratings with variable stripe width, projected with
rapidly pulsed illumination (20-40Hz). In-vitro, average size of the electrical receptive fields in normal retina was
248±59μm – similar to their visible light RF size: 249±44μm. RGCs responded to grating stripes down to 67μm using
photovoltaic stimulation in degenerate rat retina, and 28μm with visible light in normal retina. In-vivo, visual acuity in
normally-sighted controls was 29±5μm/stripe, vs. 63±4μm/stripe in rats with subretinal photovoltaic arrays,
corresponding to 20/250 acuity in human eye. With the enhanced acuity provided by eye movements and perceptual
learning in human patients, visual acuity might exceed the 20/200 threshold of legal blindness. Ease of implantation and
tiling of these wireless arrays to cover a large visual field, combined with their high resolution opens the door to highly
functional restoration of sight.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.