KEYWORDS: Actuators, Resistance, Magnetism, Systems modeling, Instrument modeling, Analytical research, Smart materials, Motion models, Data modeling, Control systems
There is currently a need for compact actuators capable of producing large deflections, large forces, and broad frequency bandwidth. In all existing active materials, large force and broadband responses are obtained at small displacements and methods for transmitting very short transducer element motion to large deformations need to be developed. This paper addresses the development of a hybrid actuator which provides virtually unlimited deflections and large forces through magnetorheological (MR) flow control and rectification of the resonant mechanical vibrations produced by a magnetostrictive Terfenol-D pump. The device is a compact, self-contained unit which is capable of producing large work output. To achieve large output force, hydraulic advantage is created by implementing a driven piston diameter that is larger than the drive piston. Since the pump operates at high speeds, a fast-acting MR fluid valve is required. The paper presents a four-port MR fluid valve in which the fluid controls its own flow while carrying the full actuator load. A multi-domain model of the device was developed with the primary goal of analyzing and demonstrating the MR fluid valve concept. A research valve was designed, constructed, and tested for purposes of model parameter identification and validation, and analysis of device behavior. Deflections of over 6 in are demonstrated with the device presented here.
There is currently a need for compact actuators capable of producing large deflections, large forces, and broad frequency bandwidth. In all existing transducer materials, large force and broadband responses are obtained at the price of small displacements and methods
for transmitting very short transducer element motion to large deformations need to be developed. This paper addresses the development of a hybrid actuator which provides virtually unlimited deflections and large forces through magnetorheological (MR) flow
control and rectification of the resonant mechanical vibrations produced by a magnetostrictive Terfenol-D pump. The device is a self-contained unit which produces large work output concurrently with stiffness and damping control, and is compact and self-locking when unpowered. To increase the output force, hydraulic advantage is created by implementing a driven piston diameter that is larger than the drive piston. Since the pump operates at high speeds in the low kHz range, a fast-acting MR fluid valve is required. The paper presents a four-port MR fluid valve in which the fluid controls its
own flow while carrying the full transducer load. A prototype two-port valve was designed and constructed. Experimental measurements at various pressure levels are presented which demonstrate the new valve concept.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.