With the advent of 3D printing and the increasing list of available materials, various functional devices can be printed for low-cost, rapid prototyping. In particular, 3D-printed strain gauges show promise in multiple applications such as robotics and structural health monitoring. However, characterization and compensation of the thermal dependence of such strain gauges have been limited in the literature. In this work the temperaturedependent resistive behavior is characterized for strain gauges printed with a commercially available filament, conductive PLA (Polylactic Acid), which has also shown other desirable uses such as stiffness-tuning for soft robots. The relationship between temperature and resistance is shown to be hysteretic. Several compensation methods (Temperature-based algebraic subtraction, Material-based algebraic subtraction, and a Wheatstone bridge-based method) are explored to mitigate the effect of temperature and show the material’s feasibility as a strain gauge. The compensation methods are quantitatively compared by calculating the mean squared error between the predicted and the ground truth strain values. It is shown that the Wheatstone bridge-based method provides the best compensation. This method achieves average errors of less than 10% and a maximum error less than 20% over a working range of approximately 15,000 microstrain (0.15% strain) over a range 30 to 40°C.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.