Based on our previous works in liquid-crystal microlens arrays (LCMAs), a new kind of optical switches using the 24×24 fiber arrays coupled with the LCMAs, which have a key dual-mode function of the switches about on and off state and work in visible and infrared range, is proposed and fabricated in this paper. Different with other common LCMAs, this new kind of dual-mode LCMAs includes two layers of control electrodes deposited directly over the surface of the top glass substrate in LC microcavity fabricated. The first layer is the patterned electrode, which is designed into basic circular holes with suitable diameter, and the second is the planar electrode. Both layered electrodes are effectively separated by a thin SiO2 film with a typical thickness of about several micrometers, and then the dual-mode microlenses are driven by applied electrical signals with different root mean square (rms) voltage.
Based on our previous works on liquid crystal microlenses driven and adjusted electrically, we present a new type of liquid crystal microlens arrays with dual-mode function (DLCMAs). Currently, the DLCMAs developed by us consist of a top electrode couple constructed by two layers of controlling electrode structure, and a bottom electrode. The top two electrode layers are respectively deposited over both sides of a glass substrate and insulated by a thin SiO2 coating, so as to act as the mode-control-part in the DLCMAs. Another planar electrode layer acting as the base electrode is deposited over the surface of a glass substrate. Two glass substrates with fabricated electrode structure are coupled into a microcavity filled by nematic liquid crystal material. The DLCMAs proposed in this paper present excellent divergence and convergence performances only loading relatively low driving voltage signal. The common optical properties of the micro-optics-structures are given experimentally.
Based on our previous work in liquid-crystal microlens arrays (LCMAs), a new kind of arrayed optical switches (AOSs) based on LCMAs with a key dual-mode function including beam convergence and divergence, is proposed and simulated in this paper. Different with our previous LCMAs, the developed LCMAs leading to AOSs have two layers of control electrodes deposited directly over the surface of the top glass substrate. One is the patterned electrode, which is designed into basic circular holes with suitable diameter, and the other is the planar electrode. Both layered electrodes are effectively separated by a thin SiO2 film with a typical thickness of about several micrometers, and then driven by electrical signals with different root mean square (rms) voltage amplitude. The experiment results show that the AOSs can work well through applying proper voltage signals over the device. Compared with other AOS structures, our AOSs have a greater integration level and lower cost.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.