This study investigated the impact of reference-tissue normalization on radiomic texture features extracted from magnetic resonance images (MRI) of non-cystic kidney parenchyma in patients with autosomal dominant polycystic kidney disease (ADPKD). Image normalization has been shown to improve robustness of features and disease classification. Texture analysis is a promising technique to differentiate between PKD1 and PKD2 variants of ADPKD, which differ in progression and patient outcomes. Regions of interest (ROIs) were placed on the liver and psoas muscle, and Z-score image normalization was performed separately based on the two different ROI placements. This pilot study included 7 PKD1 and 8 PKD2 patients (29 kidney images in total). Right and left kidneys were manually segmented on the single coronal image for each individual kidney that contained the renal artery, and a thresholding tool was used to exclude cysts from the pixels used for feature extraction. This was performed using the open-source platform Pyradiomics on the original and two variants of normalized images. Intraclass correlation coefficients (ICCs) were calculated to compare the reliability of features across normalized images. A linear discriminant analysis (LDA) classifier was used to merge the top-three performing reliable texture features for PKD1 and PKD2 classification based on the receiver operating characteristic (ROC) analysis. Seventeen of the 93 features demonstrated good-to-excellent reliability between normalization approaches. Psoas muscle-normalized images yielded the highest area under the ROC curve (AUC) value of 0.74 (0.53-0.89). Image normalization impacts texture features and classification of PKD1 and PKD2 using MRI-based texture features and should be further explored.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.