Quantum cascade lasers (QCL’s) have proven their usefulness as light sources in many applications, like remote gas
sensing, molecular spectroscopy or free-space communication. In most cases the high-quality low-divergence beam is
desired. This work presents the theoretical analysis of QCL’s beam divergence. The electromagnetic field in the
resonator is calculated according to effective index method. Theoretical results are compared with measurements.
The paper presents results of experimental investigations of spatial distribution of radiation emitted by quantum
cascade lasers. Measurements have been performed by means of a unique goniometric profilometer specially de-
signed for the large angle laser beams. The advantages and limitations of the set-up and the applied experimental
method are discussed. The obtained results have enabled the analysis of dependence of geometry of the beam
on the geometry of the laser structure and on the mount method of the laser chips. The angular divergence of
the beams has also been tested as a function of laser power supply.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.