Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It’s found greater quantum correlations using the weak measurement operators.
Quantum discord measures the fraction of the pair-wise mutual information that is locally inaccessible in a multipartite system. Nonzero quantum discord has interesting and significant applications because although non-zero entanglement guarantees the existence of quantum correlation in a bipartite quantum system, zero entanglement does not guarantee the absence of a quantum correlation. On the other hand, many quantum optics systems can be described as deformed quantum oscillators. In this work, we investigate the quantum discord of bipartite entangled nonlinear coherent states, in the context of the so-called f-deformed coherent states algebra. To calculate the quantum discord, we consider quasi- Werner mixed states bases on bipartite entangled f-deformed coherent states. Two explicit analytic expressions are derived for the quantum discord of two different nonlinear deformed coherent states. The first one considers deformed coherent states obtained as eigenstates of the annihilation deformed operator, and the second one is obtained by using a deformed displacement operator. We compare the quantum discord of those states, when the nonlinear deformation function is either associated with the SU(1,1) coherent states in the Gilmore-Perelomov or Barut-Girardello representations, respectively.
We present a proposal for an experiment in which birrefringence induced in a material is measured using weak quantum measurements. It is known that birrefringence can be induced in optical crystals, liquid crystal arrays and the so called photonic crystals by applying a DC field. The standard weak measurement analisys was applied to find the tolerance for the angular positioning of the polarizers used in the experiment.
Quantum teleportation has attracted much attention from both theorists and experimenters in the last decade. The emergence of new protocols and their actual implementation have even motivated the development of new quantum optical schemes. A key issue when teleporting a quantum state is establishing the quantum channel between sender and receiver stations, usually done by manipulating an auxiliary bipartite entangled state. The purpose of the present work is to study quantum teleportation processes in which that state is an entangled bipartite photon-added state, and the Adhikari et. al. continuous-variable quantum teleportation protocol is applied. Photon-added states can be generated using different experimental techniques, such as parametric down-conversion in a nonlinear crystal, and conditioned parametric amplification. These states are relevant because they exhibit generalized non-classical features for all orders of creation and annihilation operators, and may even show phase squeezing and sub-Poissonian distribution statistics. We study, the dependence of the fidelity of the teleported states and their photon number statistic as a function of the higher-order squeezing, and the higher-order sub-Poissonian statistic.
In this paper a novel approximated method is introduce to calculate guided-wave modes in graded-index fibers. Useful solutions have been obtained on the whole range of r for the corresponding scalar wave equation, using two-point quasirational approximations. This approach is better than the WKB approximation which is good only for the ray optic pictures and when the phase changes at the caustic are ignored. Here an adequate change of variables have been found that allows determine power series and asymptotic expansions suitable for application of the two-point quasi-rational approximant method. The results presented here agree very well with the numerical solutions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.