Fiber Evanescent Wave Spectroscopy (FEWS) is a very useful method for non-invasive and non-destructive biomedical diagnosis. We have developed a FEWS system that makes use of a Fourier Transform Infrared (FTIR) spectrometer and IR transmitting AgBrxCl1-x fibers. The FTIR-FEWS system is compact and easy to use, and it is ideal for the study of the spectroscopy of the skin in the mid-IR. The evanescent wave penetration depth in the mid-IR is comparable with the thickness of the stratum corneum, and therefore the vibrational spectra of lipids, proteins and water can be easily analyzed. We have used FTIR-FEWS for a clinical study of the skin of 60 patients, who had some suspicious skin lesions. Preliminary measurements were carried out both on the lesion and on neighboring healthy areas of the skin, showing some differences in the IR absorption. More data is needed in order to determine the possibility of diagnosis of skin cancer and its type from mid-IR spectral data.
KEYWORDS: Skin, Diffusion, Spectroscopy, FT-IR spectroscopy, Infrared spectroscopy, Attenuated total reflectance, In vivo imaging, Fiber optics, Molecules, Chemical elements
Fourier Transform Infrared (FTIR) spectroscopic systems make use of Attenuated Total Reflection (ATR) elements for the study of skin in dermatology. FTIR - ATR allows real time and reagent-less analysis of several components, simultaneously. The potential for skin studies is increased by the development of the flexible fiber optic sensor made from infrared transparent polycrystalline silver halide. Segments of fibers can replace the ATR sensing elements inside an FTIR system. Moreover a Fiberoptic Evanescent Wave Spectroscopy (FEWS) can also be used for real time in vivo measurement on skin, in situ. We used FEWS to study the diffusion of UV sunscreen lotions from the outer skin layer into the dermis and epidermis, and used the various absorption bands to differentiate between the behavior of the organic and the water molecules in the lotion. FEWS can be a powerful tool for studying the transport of drugs and cosmetic creams through the skin from the stratum corneum to the dermis and epidermis and for studying the lateral diffusion of various molecules into the skin, in vivo and in real time.
The objective of this work was to use infrared (IR) fiberoptic spectroscopy for the analysis of urinary salts. Urine samples were obtained (with no sample preparation) from two groups of patients: 24 stone forming patients, after shock wave lithotripsy, and 24 normal subjects of similar ages. IR absorption measurements were performed in real time, using Fiberoptic Evanescent Wave Spectroscopy system, based on IR transmitting silver halide fibers. The absorption data were compared with the IR spectra of aqueous solutions with known concentrations of known urinary salts. The results were then used for the study of the chemical composition of salts in urine samples and for a quantitative analysis of the concentration of these salts. We established the composition of the stones in 20 of the 24 stone forming patients, based on the characteristic absorption peaks for oxalates, carbonates, urates and phosphates observed in their urinary samples. We also determined the concentrations of these salts in the urine samples with average error of 20 percent.
The presented work demonstrates that powerful laser radiation causes changes in absorbance spectra of epoxy resin and polyethylene. Thin polymer films were located between infrared AgBrCl optical fibers and exposed to the radiation of CO2 laser. The outpot of the laser source has been varied in the range 0-8.5 Wt. Absorbance spectra were measured by FTIR spectrophotometer. It was revealed that characteristic absorbance peaks of polymers decay under the powerful IR light. The apparent dependence of peak magnitude on IR radiation power has been established. The mathematical theory of the observed effect was worked out. Authors suggested that the effect under discussion is caused by oxygen-free thermal action of IR radiation on the chemical structure of polymer materials. The revealed effect could be effectively used for the lowering of losses in adhesive contacts of IR optic elements. The novelty of the proposed method lies in the fact that thermal treatment is localized strictly in adhesive contact, optical elements to be contacted (fibers, lenses, etc.) which are highly transparent in IR don't experience the IR radiation, but polymer adhesive is subjected to a temperature rise.
This work presents the new approach to the investigation of mass transport process in polymers. The Fiber Optic Evanescent Wave Spectroscopy has been used for the real time investigation of diffusion processes in glassy polymers. Unclad AgClBr fibers of 0.9 mm diameter were dip coated by polystyrene layers of 1 - 30 micrometers thickness. The transmission of the fibers in the mid-IR was measured using a Fourier Transform Infrared spectrometer. The penetration of liquids into these layers gave rise to significant changes in the measured spectrum. These changes were used for diffusion studies in situ. The mathematical model, which allows realizing the quantitative treatment of experimental data, was developed. The model details with processes which take place at two interfaces: polymer/liquid and polymer/optical fiber. It was established that the initial stage of diffusion is of the strictly Fickian character. The model permitted us to calculate the coefficient of diffusion of water in polystyrene with a high accuracy. The huge amount of experimental points, which could be obtained by our method, allows calculation of the equilibrium concentration of penetrating liquid with an extremely high precision. This advantage of FEWS procedure offers a high accuracy of calculations of parameters of diffusion. It must be emphasized that the thickness of the film that could be defined with the least precision doesn't affect on final results. The final stage of diffusion is non-Fickian.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.