The Rubin Observatory Commissioning Camera (ComCam) is a scaled down (144 Megapixel) version of the 3.2 Gigapixel LSSTCam which will start the Legacy Survey of Space and Time (LSST), currently scheduled to start in 2024. The purpose of the ComCam is to verify the LSSTCam interfaces with the major subsystems of the observatory as well as evaluate the overall performance of the system prior to the start of the commissioning of the LSSTCam hardware on the telescope. With the delivery of all the telescope components to the summit site by 2020, the team has already started the high-level interface verification, exercising the system in a steady state model similar to that expected during the operations phase of the project. Notable activities include a simulated “slew and expose” sequence that includes moving the optical components, a settling time to account for the dynamical environment when on the telescope, and then taking an actual sequence of images with the ComCam. Another critical effort is to verify the performance of the camera refrigeration system, and testing the operational aspects of running such a system on a moving telescope in 2022. Here we present the status of the interface verification and the planned sequence of activities culminating with on-sky performance testing during the early-commissioning phase.
Rubin Observatory’s Commissioning Camera (ComCam) is a 9 CCD direct imager providing a testbed for the final telescope system just prior to its integration with the 3.2-Gigapixel LSSTCam. ComCam shares many of the same subsystem components with LSSTCam in order to provide a smaller-scale, but high-fidelity demonstration of the full system operation. In addition, a pathfinder version of the LSSTCam refrigeration system is also incorporated into the design. Here we present an overview of the final as-built design, plus initial results from performance testing in the laboratory. We also provide an update to the planned activities in Chile both prior to and during the initial first-light observations.
The construction of the Vera C. Rubin Observatory is well underway, and when completed the telescope will carry out a precision photometric survey, scanning the entire sky visible from Chile every three days. The photometric performance of the survey is expected to be dominated by systematics; therefore, multiple calibration systems have been designed to measure, characterize and compensate for these effects, including a dedicated telescope and instrument to measure variations in the atmospheric transmission over the LSST bandpasses. Now undergoing commissioning, the Auxiliary Telescope system is serving as a pathfinder for the development of the Rubin Control systems. This paper presents the current commissioning status of the telescope and control software, and discusses the lessons learned which are applicable to other observatories.
H. T. Diehl, E. Neilsen, R. Gruendl, T. M. Abbott, S. Allam, O. Alvarez, J. Annis, E. Balbinot, S. Bhargava, K. Bechtol, G. Bernstein, R. Bhatawdekar, S. Bocquet, D. Brout, R. Capasso, R. Cawthon, C. Chang, E. Cook, C. Conselice, J. Cruz, C. D'Andrea, L. da Costa, R. Das, D. DePoy, A. Drlica-Wagner, A. Elliott, S. Everett, J. Frieman, A. Fausti Neto, A. Ferté, I. Friswell, K. Furnell, L. Gelman, D. Gerdes, M. S. Gill, D. Goldstein, D. Gruen, D. Gulledge, S. Hamilton, D. Hollowood, K. Honscheid, D. James, M. Johnson, M. W. Johnson, S. Kent, R. Kessler, G. Khullar, E. Kovacs, A. Kremin, R. Kron, N. Kuropatkin, J. Lasker, A. Lathrop, T. Li, M. Manera, M. March, J. Marshall, M. Medford, F. Menanteau, I. Mohammed, M. Monroy, B. Moraes, E. Morganson, J. Muir, M. Murphy, B. Nord, A. Pace, A. Palmese, Y. Park, F. Paz-Chinchón, M. E. Pereira, D. Petravick, A. Plazas, J. Poh, T. Prochaska, A. Romer, K. Reil, A. Roodman, M. Sako, M. Sauseda, D. Scolnic, L. Secco, I. Sevilla-Noarbe, N. Shipp, J. Smith, M Soares-Santos, B. Soergel, A. Stebbins, K. Story, K. Stringer, F. Tarsitano, B. Thomas, D. Tucker, K. Vivas, A. Walker, M.-Y. Wang, C. Weaverdyck, N. Weaverdyck, W. Wester, C. Wethers, R. Wilkenson, H.-Y Wu, B. Yanny, A. Zenteno, Y. Zhang
The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 4” (Y4) and “Year 5” (Y5), the survey strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of these two-season's data, a summary of the overall status, and plans for the final survey season.
H. T. Diehl, E. Neilsen, R. Gruendl, B. Yanny, T. M. Abbott, J. Aleksić, S. Allam, J. Annis, E. Balbinot, M. Baumer, L. Beaufore, K. Bechtol, G. Bernstein, S. Birrer, C. Bonnett, D. Brout, C. Bruderer, E. Buckley-Geer, D. Capozzi, A. Carnero Rosell, F. Castander, R. Cawthon, C. Chang, L. Clerkin, R. Covarrubias, C. Cuhna, C. D'Andrea, L. da Costa, R. Das, C. Davis, J. Dietrich, A. Drlica-Wagner, A. Elliott, T. Eifler, J. Etherington, B. Flaugher, J. Frieman, A. Fausti Neto, M. Fernández, C. Furlanetto, D. Gangkofner, D. Gerdes, D. Goldstein, K. Grabowski, R. Gupta, S. Hamilton, H. Head, J. Helsby, D. Hollowood, K. Honscheid, D. James, M. Johnson, S. Jouvel, T. Kacprzac, S. Kent, R. Kessler, A. Kim, E. Krause, C. Krawiec, A. Kremin, R. Kron, S. Kuhlmann, N. Kuropatkin, O. Lahav, J. Lasker, T. Li, E. Luque, N. Maccrann, M. March, J. Marshall, N. Mondrik, E. Morganson, D. Mudd, A. Nadolski, P. Nugent, P. Melchior, F. Menanteau, D. Nagasawa, B. Nord, R. Ogando, L. Old, A. Palmese, D. Petravick, A. Plazas, A. Pujol, A. Queiroz, K. Reil, A. Romer, R. Rosenfeld, A. Roodman, P. Rooney, M. Sako, A. Salvador, C. Sánchez, E. Sánchez Álvaro, B. Santiago, A. Schooneveld, M. Schubnell, E. Sheldon, A. Smith, R. Smith, M. Soares-Santos, F. Sobreira, M. Soumagnac, H. Spinka, S. Tie, D. Tucker, V. Vikram, K. Vivas, A. Walker, W. Wester, M. Wiesner, H. Wilcox, P. Williams, A. Zenteno, Y. Zhang, Z. Zhang
The Dark Energy Survey (DES) is an operating optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES has completed its third observing season out of a nominal five. This paper describes DES “Year 1” (Y1) to “Year 3” (Y3), the strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the first three season's data, and describes how we are adjusting the survey strategy in the face of the El Niño Southern Oscillation.
H. Diehl, T. M. Abbott, J. Annis, R. Armstrong, L. Baruah, A. Bermeo, G. Bernstein, E. Beynon, C. Bruderer, E. Buckley-Geer, H. Campbell, D. Capozzi, M. Carter, R. Casas, L. Clerkin, R. Covarrubias, C. Cuhna, C. D'Andrea, L. da Costa, R. Das, D. DePoy, J. Dietrich, A. Drlica-Wagner, A. Elliott, T. Eifler, J. Estrada, J. Etherington, B. Flaugher, J. Frieman, A. Fausti Neto, M. Gelman, D. Gerdes, D. Gruen, R. Gruendl, J. Hao, H. Head, J. Helsby, K. Hoffman, K. Honscheid, D. James, M. Johnson, T. Kacprzac, J. Katsaros, R. Kennedy, S. Kent, R. Kessler, A. Kim, E. Krause, R. Kron, S. Kuhlmann, A. Kunder, T. Li, H. Lin, N. Maccrann, M. March, J. Marshall, E. Neilsen, P. Nugent, P. Martini, P. Melchior, F. Menanteau, R. Nichol, B. Nord, R. Ogando, L. Old, A. Papadopoulos, K. Patton, D. Petravick, A. Plazas, R. Poulton, A. Pujol, K. Reil, T. Rigby, A. Romer, A. Roodman, P. Rooney, E. Sanchez Alvaro, S. Serrano, E. Sheldon, A. Smith, R. Smith, M. Soares-Santos, M. Soumagnac, H. Spinka, E. Suchyta, D. Tucker, A. Walker, W. Wester, M. Wiesner, H. Wilcox, R. Williams, B. Yanny, Y. Zhang
The Dark Energy Survey (DES) is a next generation optical survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 5000 sq-degree wide field and 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 square-degree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES started its first observing season on August 31, 2013 and observed for 105 nights through mid-February 2014. This paper describes DES “Year 1” (Y1), the strategy and goals for the first year's data, provides an outline of the operations procedures, lists the efficiency of survey operations and the causes of lost observing time, provides details about the quality of the first year's data, and hints at the “Year 2” plan and outlook.
The six-meter Atacama Cosmology Telescope (ACT) in Chile was built to measure the cosmic microwave background
(CMB) at arcminute angular scales. We are building a new polarization sensitive receiver for ACT
(ACTPol). ACTPol will characterize the gravitational lensing of the CMB and aims to constrain the sum of the
neutrino masses with ~ 0.05 eV precision, the running of the spectral index of inflation-induced fluctuations,
and the primordial helium abundance to better than 1 %. Our observing fields will overlap with the SDSS BOSS
survey at optical wavelengths, enabling a variety of cross-correlation science, including studies of the growth of
cosmic structure from Sunyaev-Zel'dovich observations of clusters of galaxies as well as independent constraints
on the sum of the neutrino masses. We describe the science objectives and the initial receiver design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.