Continuous tone gray scale deep UV photomask technology offers new cost effective opportunities for the mass scale production of MEMS structures, diffractive optical elements (DOEs), computer generated holograms (CGHs), and kinoform optics. A new technology for the low cost fabrication of continuous tone gray scale photomasks for deep UV photolithography applications has been demonstrated. This technology is based on the use of a photosensitive spin-on-glass (SOG) thin film deposited onto a UV transparent substrate such as fused silica. Light exposure, from either a lithography setup or a laser pattern generator, onto the photosensitive SOG film induces a color change from clear (UV transparent) to dark (UV absorbing). The amount of photo induced color attenuation on the film is directly proportional to the energy exposure of the light, hence allowing the formation of fully continuous tone patterns. Once exposed the image pattern, with a resolution of 0.1 micrometers, is permanently fixed by heat treatment without the need of an etching step.
A technology for the low cost production of continuous tone gray scale photomasks for deep UV photolithography applications has been demonstrated. This technology is based on the use of a photosensitive spin-on-glass (SOG) thin film deposited onto a UV transparent substrate such as quartz. Different light exposure energies, from either a lithography setup or a laser pattern generator, onto the photosensitive SOG film changes the UV absorption spectrum at both H and I mercury emission lines. The amount of photo induced attenuation on the film is directly proportional to light exposure energy, hence allowing the formation of fully continuous tone patterns. Once the image pattern is photo-generated with a resolution of 0.1 to 1 micrometer, it is permanently fixed by a thermal treatment step without the need of an etching step. This new continuous tone deep UV photomask technology offers new cost effective opportunities for the production of micro-electro-mechanical systems (MEMS) structures, diffractive optical elements (DOEs), computer generated holograms (CGHs), and kinoform optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.