Extreme field gradients intrinsic to relativistic laser plasma interactions enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. So far, only complex micro-engineering of the relativistic plasma accelerator itself and limited adoption of conventional beam optics provided access to global beam parameters that define propagation.
We present a novel, counter-intuitive all-optical approach to imprint detailed spatial information from the driving laser pulse to the proton bunch.
The concept was motivated by an effect initially observed in an experiment dedicated to laser-driven proton acceleration from a renewable micrometer sized cryogenic Hydrogen jet target at the 150 TW Draco laser at HZDR. A compact, recollimating single plasma mirror was used to enhance the temporal laser contrast, which could be monitored on a single-shot base by means of self-referenced spectral interferometry with extended time excursion (SRSI-ETE) at unprecedented dynamic and temporal range. Unexpectedly, the accelerated proton beam profile showed in this experiment prominent features of the collimated laser beam, such as the shadow of obstacles inserted deliberately in the beam.
In a series of further experiments, the spatial profile of the energetic proton bunch was found to exhibit identical features as the fraction of the laser pulse passing around a target of limited size. The formation of quasi-static electric fields in the beam path by ionization of residual gas in the experimental chamber results in asynchronous information transfer between the laser pulse and the naturally delayed proton bunch.
Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a new level of proton beam manipulation.
Recently, strong effort has been done in exploring shock acceleration for the generation of highly energetic ion beams, with applications e.g. for medical purposes. The heating of a near-critical density plasma target with a laser, increases the electron temperature and excites ion acoustic waves, which can lead to electrostatic shock formation due to non-linear wave breaking. The higher inertia background ions are reflected and accelerated at the shock potential, showing a quasi-monoenergetic profile. For the first time, its feasibility has been demonstrated experimentally, gaining 20 MeV protons with a very narrow energy spread1 and a predicted scaling up to 200 MeV for lasers with a0 = 10.2 In the quest for high proton energies, optimal conditions for shock formation have to be found. We developed a relativistic model that connects the initial parameters with the steady state shock Mach number, which is based on the Sagdeev approach,3, 4 showing an increase of the ion energy for high upstream electron temperatures and low downstream to upstream density ratios5 and high temperature ratios, which has been confirmed by particle-in-cell simulations. In the context of producing a quasi-monoenergetic beam profile, we studied the enhancement of the Weibel instability in an electrostatic shock setup. Governing parameter regimes for the transition to an electromagnetic shock, which is associated with a broadening of the ion spectrum, were determined analytically and confirmed with simulations.
We study the possibility of producing short-wavelength magnetostatic structures in plasmas by exciting a plasma
magnetic mode in the collision of light pulses with relativistic ionization fronts. Results from PIC simulations
demonstrate the generation of these structures with existing state-of-the-art laser systems. We analyze the feasibility of
using the magnetic structure associated with the plasma magnetic mode as an undulator for compact synchrotron
radiation sources, illustrating the generation of ultrashort-wavelength radiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.