Hyperbolic nanoparticles provide a versatile platform to widely tune light-matter interactions. Active nanophotonics can be realized by controlling the optical properties of materials with external magnetic fields. Here, we explore the influence of optical anisotropy on the magneto-optical response of hyperbolic nanoparticles across the visible and near infrared spectral range. By using a perturbative approach, we establish a model where the magneto-optical activity of the system is described in terms of the coupling of fundamental electric and magnetic dipole modes, which are induced by the hyperbolic dispersion, with a static magnetic field. Finally, an analytical model is established in the framework of Mie theory to describe the magneto-optical response and identify the contribution of electric and magnetic modes to the total spectrum.
In the framework of magneto-photonics, the optical properties of a material can controlled by an external magnetic field, providing active functionalities for applications, such as sensing and nonreciprocal optical isolation. For noble metals in particular, the inherently weak magnetooptical coupling of the bulk material can be greatly enhanced via excitation of localized surface plasmons (LSP) in nanostructured samples. Hyperbolic metamaterials therein provide the ideal platform to tune the plasmonic properties via careful design of the effective permittivity tensor. Here, we report on the magnetic circular dichroism of electric and magnetic dipole modes of a type II hyperbolic metasurface. Disk-shaped nanoparticles consist in stacks of alternating dielectric and metallic layers. Using an effective medium theory, we show that the optical properties of the system can be perfectly described by an anisotropic homogenized permittivity. Magnetic circular dichroism spectroscopy experiments are compared with plain gold disk samples and reveal a broadband magneto-optical response across the visible and near infrared spectral range. In particular, derivative-like spectral signatures at the resonances of the nanoparticles prove the induced dichroism for the two modes of the system. Results are interpreted in terms of magnetically induced spatial confinement/broadening of circular currents in the nanoparticles and are compared with a comprehensive numerical model based on the finite elements method using the real dimensions of the nanostructure. Spherical particles are employed as an analytical model system, allowing to generalize the contribution of electric and magnetic modes to the total magneto-optical response. More in detail, interaction cross sections are calculated as a weighted sum of the corresponding Mie coefficients. Utilizing a perturbative approach, we describe the magneto-optical effect in terms of linear changes in the cyclotron frequency of free charge carriers in the metal. By comparing our analytical model with full-wave numerical results, we can identify the contribution of electric and magnetic dipole modes to the spectrum and reproduce the spectral line shape we observe in the experiments for the hyperbolic nanoparticles.
Generalized Brewster effect is a phenomenon where light of both TE (S-) and TM (P-) polarization transmit through a surface with no reflection for a particular incident angle. Generalized Brewster angle (GBA) in visible and near-infrared (NIR) wavelength region is very useful in many scientific and technical areas of applications. However, it is very rare to find a material having this effect as it demands both dielectric and magnetic response in that wavelength range and usually magnetic response is extremely weak in the optical wavelengths. Here we demonstrate the GBA effect of an anisotropic material composed of highly ordered high aspect ratio aluminium doped zinc oxide (AZO) nanopillar arrays. Along with the experimental demonstration, we also provide a proper numerical analysis to investigate the origin of this effect in the pillar array system which will be useful for many conventional as well as new applications in photonics including protein sensing.
Perfect light absorption (PLA) in nanophotonics has a wide range of applications from solar-thermal based applications to radiative cooling. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. On the other hand, thin-film light absorbers are lithographically free and can be deposited cheaply on large area based on matured technologies. However, thin-film light absorbers were thought to have major limitation and cannot be tailored compared to metamaterials. Here, we show how to design PLA using thin-films in terms of wavelength range, bandwidth, spatial profile of optical losses, directionality and iridescence. We also show that iridescent free, PLA can occur by simply heating metallic thin-films when the metal is of low reflectance and its oxide is of high refractive index. We theoretically and experimentally demonstrate Generalized Brewster angle effect in thin film light absorbers. In addition, we demonstrate hydrogen sensing using three different PLA strategies showing record sensitivity and figure of merit. Furthermore, we show various strategies to create ultra-pure structural colors. Finally, we demonstrate different solar-thermal applications for novel thin-film PLA designs.
We present a new class of thin-film based metamaterials that exhibits Fano resonance with wide range of potential applications. We realize Fano resonance via thin-film interference between a broadband (continuum) and a narrowband (discrete) light absorbers. Fano resonant optical coatings (FROCs) exhibit selective light reflection, similar to distributed bragg reflectors, with narrower bandwidth and overall significantly less thickness for a given wavelength range. Accordingly, FROCs produce vibrant colors superior to structural coloring via selective light absorption that has been demonstrated using metamaterials and thin-film cavities. We control the iridescence of the produced colors and can produce iridescent free, ultra-pure colors spanning the entire visible spectrum. Furthermore, we show that FROCs can be used as narrowband beam splitters, as opposed to being simple color filter similar to metal-dielectric cavities. Finally, we utilize the absorption/reflection properties of FROCs in energy applications and show that by selectively reflecting light within the absorption band of Si photovoltaic cell, while absorbing the rest of the solar spectrum, we obtain higher power from PV cells as opposed to a normal silver mirror, while increasing the FROC temperature significantly. Accordingly, FROCs can play a crucial role in hybrid, solar-PV and solar-thermal power generation which is of major importance in recent years due to limitation on electric energy storage. By coating an Aluminum sheet with FROC, while processing its back side to be superwicking, we demonstrate single-element spectral splitting that generate electricity from a PV cell while using the generated heat for water desalination.
KEYWORDS: Solar energy, Thin films, Thin film coatings, Optical coatings, Energy efficiency, Solar cells, Photovoltaics, Energy conversion efficiency, Beam splitters, Optical components
Increasing the efficiency and cost effectiveness of solar energy generation allowed them to compete with traditional carbon-based energy sources in many energy markets worldwide. However, a major problem facing the proliferation of solar energy generation is energy storage. Photovoltaic (PV) generators enjoy relatively high efficiency but suffer from high electric energy storage costs. On the other hand, solar-thermal energy conversion enables storing heat and dispatch electricity at lower storage costs but with less efficiency compared to photovoltaics. Hybridizing both solar energy conversion can address the energy storage problem. Furthermore, single junction PVs are unable to convert a large portion of the solar spectrum to energy which eventually lead to PV thermalization. Spectral beam splitting is a promising method to achieve high efficiency solar energy conversion while hybridizing electric and thermal solar energy generation.
Here, we use novel thin-film based optical coatings to develop single element selective light reflector/absorber that reflects within the wavelength range corresponding to a PV cell absorption band, while absorbing the remaining solar spectrum. We show that reflecting solar light on a PV cell using a silver mirror is less efficient and has higher temperature compared to using selective light reflector/absorber when using optical concentration exceeding 2 suns. We demonstrate hybrid PV generation and water sanitation/desalination using an Aluminum sheet with thin-film selective light reflector /absorber deposited on one side, while the other side is treated with femtosecond laser to become superwicking.
In the last decade, nanotechnologies and biomedicine have reached remarkable levels of integration and cross-fertilization aiming to address unmet clinical needs by designing functional materials and transformative technologies for precision medicine. This seminar will review how we harness light-matter interaction at the nanoscale to design artificial materials with fascinating properties mainly originating by form-function relationships.
Among several others, hybrid nano-carriers, viral cargos, plasmonic metamaterials represent only a small fraction of a large variety of systems proposed to achieve local drug-delivery, photo-thermal and photodynamic therapies, high resolution imaging and sensing, stimulated specific immune response to treat and monitor neurodegenerative diseases and cancers. In this context, we have developed miniaturized plasmonic biosensor platforms that outperform current sensing technologies and are based on hyperbolic metamaterials which support highly confined bulk plasmon modes. Recent opto-genetic research activities based on neurophotonics approaches will be discussed. This research is a major scientific and technological challenge that will revolutionize our capability of managing and exploiting neuronal circuits.
We report on the realization and characterization of a polymeric template sculptured in
photosensitive material, on a chemical inert surface. The structure is devoted to micro/nanoconfinement
and stabilization of a wide range of organic and nano-particle components with selfarrangement
properties at the nanoscale [1]. High quality morphology of a polymeric, micropatterned,
array is obtained by combining a, nano-precision level, optical holographic setup and a
multi-step chemico-physical process. The "universal" template represents the basic platform to be
filled with different organic materials, which can also include metallic nano-particles. The long
range self-organization is induced without making use of any kind of surface chemistry. Due to their
capability of exhibiting self organization, light responsive Liquid Crystals (LC) [2] and short pitch
Cholesterics LC [3] have been exploited, and experimental studies have been carried out in order to
investigate the photo-optical and elecro-optical response of obtained composite structures for the
realization of photonic devices. Finally, the possibility of including metallic nano-particles has been
also investigated, with the aim of inducing a "metamaterial" behavior of the realized structure.
The first experimental evidence of random laser action in a partially ordered, dye doped nematic liquid crystal
with long-range dielectric tensor fluctuations is reported. Above a given pump power the fluorescence curve
collapses and discrete sharp peaks emerge above the residual spontaneous emission spectrum. The spectral
linewidth of these emission peaks is narrow banded, typically around 0.5nm. The unexpected surviving of
interference effects in recurrent multiple scattering of the emitted photons provide the required optical feedback
for lasing in nematic liquid crystalline materials. Light waves coherent backscattering in orientationally ordered
nematics manifests a weak localization, strongly supporting the diffusive laser action phenomenon in the presence
of a gain medium. Unlike distributed feedback mirror-less laser, this system can be considered as a cavity-less
microlaser where the disorder unexpectedly plays the most important role, behaving as randomly distributed
feedback laser. The far field spatial distribution of the emission intensity shows a huge number of bright tiny
spots spatially overlapped and the intensity of each pulse strongly fluctuates in time and space. Here, we report
the main characteristics of this novel systems for various confinement geometries and under different conditions.
A brief presentation of boundary-less systems such as free standing and freely suspended dye doped nematic films
and droplets is also introduced, revealing unique emission features because of the complete absence of confining borders.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.