Terahertz time-domain spectroscopy (THz-TDS) is a method used in research and industry for non-invasive characterization of products and materials. Many THz-TDS systems rely on parametric conversion in semiconductor crystals to generate and detect phase-locked THz pulses, providing reliable access to frequencies below 3 THz. Accessing higher frequencies, however, often requires a sophisticated near-infrared (NIR) source delivering sub- 100 fs pulses to access the required spectral bandwidth and thin nonlinear crystals (few hundred micrometers thick) to minimize phase mismatch during both the THz generation and detection processes. As a result, broadband THz- TDS configurations rely on laser systems which are often bulky and costly, resulting in inefficient THz generation and detection processes due to a limited nonlinear interaction length in the crystals. To overcome these limitations, we introduce three modules to a THz-TDS system employing a compact and cost-effective pulsed laser. First, a fiberbased component is used to broaden the output laser spectrum and compress the pulse duration. This module provides the NIR frequency content needed for broadband THz generation through optical rectification and a pulse duration short enough to efficiently resolve high THz frequencies during electro-optic sampling. The other two modules utilize a thick nonlinear crystal with a periodically patterned surface to optimize the efficiencies of the broadband THz generation and detection processes. In this configuration, a long nonlinear interaction length is guaranteed while noncollinear phase matching provides access to a broad spectral range. The combination of these modules extends the THz spectrum from 3 THz to beyond 6 THz with a peak dynamic range >50 dB at 3.5 THz.
Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.