SignificanceIntraoperative molecular imaging (IMI) enables the detection and visualization of cancer tissue using targeted radioactive or fluorescent tracers. While IMI research has rapidly expanded, including the recent Food and Drug Administration approval of a targeted fluorophore, the limits of detection have not been well-defined.AimThe ability of widely available handheld intraoperative tools (Neoprobe and SPY-PHI) to measure gamma decay and fluorescence intensity from IMI tracers was assessed while varying characteristics of both the signal source and the intervening tissue or gelatin phantoms.ApproachGamma decay signal and fluorescence from tracer-bearing tumors (TBTs) and modifiable tumor-like inclusions (TLIs) were measured through increasing thicknesses of porcine tissue and gelatin in custom 3D-printed molds. TBTs buried beneath porcine tissue were used to simulate IMI-guided tumor resection.ResultsGamma decay from TBTs and TLIs was detected through significantly thicker tissue and gelatin than fluorescence, with at least 5% of the maximum signal observed through up to 5 and 0.5 cm, respectively, depending on the overlying tissue type or gelatin.ConclusionsWe developed novel systems that can be fine-tuned to simulate variable tumor characteristics and tissue environments. These were used to evaluate the detection of fluorescent and gamma signals from IMI tracers and simulate IMI surgery.
SignificanceThis third biennial intraoperative molecular imaging (IMI) conference shows how optical contrast agents have been applied to develop clinically significant endpoints that improve precision cancer surgery.AimNational and international experts on IMI presented ongoing clinical trials in cancer surgery and preclinical work. Previously known dyes (with broader applications), new dyes, novel nonfluorescence-based imaging techniques, pediatric dyes, and normal tissue dyes were discussed.ApproachPrincipal investigators presenting at the Perelman School of Medicine Abramson Cancer Center’s third clinical trials update on IMI were selected to discuss their clinical trials and endpoints.ResultsDyes that are FDA-approved or currently under clinical investigation in phase 1, 2, and 3 trials were discussed. Sections on how to move benchwork research to the bedside were also included. There was also a dedicated section for pediatric dyes and nonfluorescence-based dyes that have been newly developed.ConclusionsIMI is a valuable adjunct in precision cancer surgery and has broad applications in multiple subspecialties. It has been reliably used to alter the surgical course of patients and in clinical decision making. There remain gaps in the utilization of IMI in certain subspecialties and potential for developing newer and improved dyes and imaging techniques.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.