A potential application for ferroelectric thin films is micro positioning and actuation, as in MEMS devices. The amount of actuation possible is determined by a number of factors: the piezoelectric coefficient d31, geometric factors and the compliance of both the actuator and cantilever and the electric field across the film. It is important for their realization as devices in applications that these micro-actuators are characterized. One such means is to use optical beam deflection (OBD). However, whilst extremely simple to implement, optical beam deflection does not provide an absolute measure of displacement. For absolute displacement measurement, with directional determination, a dual-beam normal incidence polarization interferometer is required. Based upon an interferometer developed in our laboratory to measure the flying height or head-disk spacing in a hard disk drive, an optical system is proposed which enables both an OBD and a polarization interferometer to be combined in one compact system. Details of both systems and are presented and the combined system described.
One of the most critical and effective parameters in increasing areal density is the flying height or spacing between the read-write head and the recording disk medium. As the flying height reduces to near contact, the head flies around 5 nm about the disk surface. To date, optical interferometry has been the major means for the characterization of this parameter. However, it is difficult to use it directly to measure the flying height on a sealed drive. To circumvent this limitation, a system based upon CD-ROM optics has been designed. The results from the system are correlated to measurements of suspension arm movement and disk flutter using poly-vinylidine-flouride (PVdF) strain sensors. A CD-ROM drive utilizes a laser with photodiodes to read data from the disk. The photo detector output responds linearly to changes in the lens-disk separation. In our system two CD-ROM heads are located within a rig that allows independent positioning in all three planes. The optics are configured to reflect off of a typical hard disk drive disk and the slider. To validate its performance a thin (110 micron) sheet of poly vinylidine flouride (PVdF) piezoelectric material is bonded to the suspension arm to measure the average induced strain. A further PVdF sensor was used to measure the edge displacement of the disk due to disk bending. The sensor used was in a cantilever configuration, with one end rigidly bonded to the drive chassis in a manner that pre-tensions the cantilever against the disk. Any movement of the disk would change the strain induced in the cantilever.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.