Whispering-Gallery-Mode (WGM) photonic crystal microcavity is a kind of photonic crystal application and can
potentially be used for miniaturized photonic devices, such as thresholdless lasers. In this paper we study the WGM of
photonic crystal microcavities focusing on the so called H2 cavities which are formed by removing seven air holes. The
WGM in these large-size cavities has some advantages compared with single defect WGM in the view of real device
applications. We further add a central air hole in the cavity region to analyze the effect on WGM in the microcavity by
finite difference time domain (FDTD) and plane wave expansion (PWE). It is found that the tolerance of WGM is large
enough for the fabrication of electrical injection structure.
A novel 980nm bottom-emitting VCSELs array with high power density and good beam property of Gaussian far-field
distribution is reported. This array is composed of 5 symmetrically-arranged elements of 200&μm,150μm and
100μm-diameterμwith the center spacings of 300μm and 250μm respectively. The maximum power is 880mW at a
current of 4A, corresponding to 1KW/cm2 average optical power density. The differential resistance is Ω with a
threshold of 0.56A. The novel array is compared with a 300μm-aperture-size single device and a 4*4 2-D array with
50μm element aperture size and 250μm centre spacing. The three devices have the same lasing area. The conclusion is
that the novel array is better in the property of output power, threshold current, lasing spectra, far-field distribution etc.
Pulsed anodic oxidation technique, a new way of forming current blocking layers, was successfully used in
ridge-waveguide QW laser fabrication. We apply this method in 980nm VCSELs fabrication to form a high-quality
native oxide current blocking layer, which simplify the device process. A significant reduction of threshold current and a
distinguished device performance are achieved. The 500μm-diameter device has a current threshold as low as 0.48W.
The maximum CW operation output power at room temperature is 1.48W. The lateral divergence angle θparalleland vertical divergence angle θperpendicular are as low as 15.3° and 13.8° without side-lobes at a current of 6A.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.