We will present how to fabricate nanoantennas and metasurfaces in van der Waarls (vdW) materials in a variety of geometries and a range of photonic applications. We observed Mie resonances as well as strong coupling between the excitonic features and anapole modes in the vdW nanoantenna. Due to the weak vdW interactions of the nanoresonators and the substrate, we were able to use an atomic force microscopy cantilever in the repositioning of double-pillar nanoantennas to achieve ultra-small gaps of 10 nm. By employing a monolayer of WS2 as the gain material, we observe room temperature Purcell enhancement of emission as well as low temperature formation of single photon emitters with enhanced quantum efficiencies. More recently, we have also achieved bound states in the continuum ultra-low threshold lasing with these materials, highlighting the vdW materials as a promising platform for optoelectronic devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.