FIRST (Fibered Imager foR a Single Telescope instrument) is an on-sky instrument at SUBARU Telescope that enables high-contrast imaging and spectroscopy, thanks to a unique combination of pairwise combination of sub-apertures using a Photonic Integrated Circuit that allows spatial filtering by single-mode waveguides and cross-dispersion in the visible (~ 600-800 nm), a high-efficiency alternative to sparse aperture masking. To reduce crosstalk observed in planar PICs, and therefore increase the instrument’s stability and sensitivity, we have designed and fabricated a series of 3D laserwritten optical PICs with 5T beam combiners. Different laser powers were used to address different single-mode spectral ranges. The multi-aperture beam combiner consists of five input waveguides spaced by 250 μm. Each input is split into four waveguides and the twenty channels undergo pairwise recombination, using Y-junctions, to produce ten outputs. In this work, we present the interferometric performances of these 3D PICs when exposed to a point-like light source (single star) or a two-points-like light source (binary) on the FIRST/SUBARU instrument replica built at LESIA – Observatoire de Paris.
In previous work, we identified the optimal 5T 3D device, as being single-mode between 550-800 nm and showing good internal transmission in all input channels, above 45% at 635nm. The internal transmission (sum of the output values obtained for the four waveguides of the 1x4 splitter as normalized to the output signal obtained from the straight waveguide used as a reference) was measured. Two inputs achieved 80% transmission. The PIC was installed in the FIRST/SUBARU optical bench simulator at LESIA, to inject light into five inputs simultaneously and scan the fringes using independent MEMS segments, inducing a relative OPD modulation. The results of this study, comparing the signature obtained for a single source (star) as compared to a binary, will be presented in this work. We will show that both polarizations are guided, with no crosstalk, and analyze the interferometric performances as a function of the source type, showing that the binary companion can be detected.
We report on the dissipative soliton operation of a diode-pumped single-crystal bulk Yb:KGW laser oscillator in the all-positive-dispersion regime. Stable passively mode-locked pulses with strong positive chirp and steep spectral edges are obtained. The spectral centering at 1038.6 nm has a bandwidth of about 6.9 nm, and the chirped pulses have a pulse duration of 4.317 ps. The maximum average power can be up to 2.07 W when pumped by absorbed pump power of 5.3 W. The mode-locked slope efficiency and optical–optical conversion efficiency are shown to be 62% and 39%, respectively. Considering the pulse repetition rate with a value of 52 MHz, the corresponding pulse energy is estimated to be 39.8 nJ.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.