Monolithic integration of III–V semiconductor materials on planar on-axis silicon (001) is one of the most promising method for low-cost and scalable photonic integrated circuits. Here, we present InAs/GaAs quantum dots microdisk lasers monolithically grown on on-axis Si (001) substrate with ultra-low lasing threshold under room-temperature continues-wave optical pumping. The promising lasing characteristics of the microdisk lasers with ultra-low threshold and small footprint represent a major advance towards large-scale, low-cost integration of laser sources on silicon-based platform.
A cantilever-based microring laser structure was proposed for easily integrating III-V active layer into mechanically stretchable substrates. Local strain gauges were demonstrated by embedding cantilever-based microring lasers in a deformable polymer substrate. The characterizations of microscale local strain gauges had been studied from both simulated and experimental results. The lasing wavelength of strain gauges was blue-shift and linear tuned by stretching the flexible substrate. Gauge factor being ~11.5 nm per stretching unit was obtained for a cantilever-based microring laser with structural parameters R=1.25 μm, W1=450 nm and W2=240 nm. Such microring lasers embedded in a flexible substrate are supposed to function not only as strain gauges for monitoring the micro- or nano-structured deformation, but also tunable light sources for photonic integrated circuits
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.