The Microelectronics Research Group (MRG) at The University of Western Australia is a key partner of the Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems. In this presentation, an overview of ongoing research will be given with an emphasis on the flagship research activities of MCT-based imaging arrays and Microelectromechanical Systems (MEMS). The MCT research and development utilise a vertically integrated capability from semiconductor material growth, through device modelling and design, to focal-plane-array fabrication and packaging. In support of the detector array capability, fully integrated MEMS technology can be used to further enhance the sensor device performance through the focal plane integration of tunable filters for spectral classification and infrared spectroscopy. The combination of high-performance detector designs and tunable spectral filters provides a major differentiator for military imaging systems, particularly for those operating in complex and degraded environments. This talk will highlight several research activities that are highly relevant to defence applications including metamaterial enhanced infrared detectors, and the fabrication of infra-red focal plane arrays on flexible substrates. For the MEMS technology, both wideband and narrowband tunable spectral filters will be discussed for multispectral imaging in the SWIR, MWIR and LWIR bands, and for hyperspectral imaging and spectroscopy. Considerations on future research activities and technology trends will be presented including opportunities for the rapid development of high-performance and spectrally adaptive low SWaP sensing systems for enhanced detection and discrimination of partially concealed or camouflaged targets in cluttered backgrounds.
While agile multispectral imaging solutions presently exist, their size, weight and power (SWaP) specifications prevents deployment on small portable platforms such as drones. As much of the size and weight of existing solutions is attributed to the wavelength-selective optical subsystem, realizing low-SWaP hinges on miniaturization of this subsystem. The ultimate multispectral imaging implementation would integrate the wavelength-selective component at the imaging focal plane array. This paper presents a solution which aims to achieve such integration. Recent developments in Microelectromechanical Systems (MEMS) have realized a surface-micromachined optical tunable filter, operating in the shortwave infrared wavelength band (SWIR: 1 μm – 2.6 μm) for applications in miniature optical spectrometers. The tunable filter is a Fabry-Perot (FP) structure, composed of a fixed dielectric mirror on a silicon substrate, and a movable dielectric mirror suspended above. The separation (air gap) between these two mirrors defines the optical transmission centre-wavelength of this Fabry Perot structure. Consequently, electrostatic actuation of the top mirror towards the bottom mirror allows the gap, and thus the transmission centre-wavelength, to be controlled. This paper presents work towards integration of such a MEMS tunable filter technology directly on an infrared focal plan array. Realizing this integration relies on: (1) expanding the optical area of the MEMS Fabry Perot structure to cover a significant portion of the two-dimensional focal plan array, which is generally multi-millimetre in each of its two dimensions; and (2) devising a structure that will allow actuation of the MEMS filter with under 20 V.
This paper presents a proof-of-concept for microelectromechanical system (MEMS)-based fixed cavity Fabry–Pérot interferometers (FPIs) operating in the long-wavelength infrared (LWIR, 8 to 12 μm) region. This work reports for the first time on the use of low-index BaF2 thin films in combination with Ge high-index thin films for such applications. Extremely flat and stress-free ∼3-μm-thick free-standing distributed Bragg reflectors (DBRs) are also presented in this article, which were realized using thick lift-off of a trilayer structure fabricated using Ge and BaF2 optical layers. A peak-to-peak flatness was achieved for free-standing surface micromachined structures within the range of 10 to 20 nm across large spatial dimensions of several hundred micrometers. Finally, the optical characteristics of narrowband LWIR fixed cavity FPIs are also presented with a view toward the future realization of tunable wavelength MEMS-based spectrometers for spectral sensing. The measured optical characteristics of released FPIs agree with the modeled optical response after taking into consideration the fabrication-induced imperfections in the free-standing top DBR such as an average tilt of 15 nm and surface roughness of 25 nm. The fabricated FPIs are shown to have a linewidth of ∼110 nm and a suitable peak transmittance value of ∼50 % , which meets the requirements for their utilization in tunable MEMS-based LWIR spectroscopic sensing and imaging applications requiring spectral discrimination with narrow linewidth.
High performance distributed Bragg reflectors (DBRs) are key elements to achieving high finesse MEMS-based Fabry–Pérot interferometers (FPIs). Suitable mechanical parameters combined with high contrast between the refractive indices of the constituent optical materials are the main requirements. In this paper, Germanium (Ge) and barium fluoride (BaF2) optical thin-films have been investigated for mid-wave infrared (MWIR) and long-wave infrared (LWIR) filter applications. Thin-film deposition and fabrication processes were optimised to achieve mechanical and optical properties that provide flat suspended structures with uniform thickness and maximum reflectivity. Ge-BaF2-Ge 3-layer solid-material DBRs have been fabricated that matched the predicted simulation performance, although a degradation in performance was observed for wavelengths beyond 10 μm that is associated with optical absorption in the BaF2 material. Ge-Air-Ge 3-layer air-gap DBRs, in which air rather than BaF2 served as the low refractive index layer, were realized to exhibit layer flatness at the level of 10 to 20 nm across lateral DBR dimensions of several hundred micrometers. Measured DBR reflectance was found to be ≳90 % over the entire wavelength range of the MWIR band and for the LWIR band up to a wavelength of 11 μm. Simulations based on the measured DBR reflectance indicates that MEMS-based FPIs are able to achieve a peak transmission of ≳90 % over the entire MWIR band and up to 10 μm in the LWIR band, with a corresponding spectral passband of ≲50 nm in the MWIR and <80 nm in the LWIR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.